Surface functionalization of CNTs by a nitro group as a sensor device element: theoretical research

2021 ◽  
Vol 6 (2) ◽  
pp. 113-121
Author(s):  
Irina V. Zaporotskova ◽  
Natalya P. Boroznina ◽  
Evgeniy S. Dryuchkov ◽  
Tatyana S. Shek ◽  
Yulia V. Butenko ◽  
...  

The problem of modifying carbon nanotubes (CNTs) by functional groups is relevant in connection with the intensive development of the nanoindustry, in particular, nano- and microelectronics. For example, a modified nanotube can be used as a sensor device element for detecting microenvironments of various substances, in particular, metals included in salts and alkalis. The paper discusses the possibility of creating a highly efficient sensor using single-walled carbon nanotubes as a sensitive element, the surface of which is modified with the functional nitro group —NO2. Quantum-chemical research of the process of attaching a nitro group to the outer surface of a single-walled CNTs of the (6, 0) type were carried out, which proved the possibility of modifying CNTs and the formation of a bond between the —NO2 group and the carbon atom of the nanotube surface. The results of computer simulation of the interaction process of a surface-modified carbon nanotube with alkali metal atoms (lithium, sodium, potassium) are presented. The sensory interaction of a modified carbon nanosystem with selected metal atoms was investigated, which proved the possibility of identifying these atoms using a nanotubular system that can act as a sensor device element. When interacting with alkali metal atoms in the “СNT – NO2” complex, the number of major carriers increases due to the transfer of electron density from metal atoms to the modified CNTs. The results presented in this paper were obtained using the molecular cluster model and the DFT calculation method with the exchange-correlation functional B3LYP (valence split basis set 6-31G).

2021 ◽  
pp. 27-34
Author(s):  
Irina Zaporotskova ◽  
◽  
Evgeniy Dryuchkov ◽  
Maria Chesheva ◽  
Daria Zvonareva ◽  
...  

The problem of modification of boron-carbon nanotubes (BCNT) by functional groups is relevant in connection with the intensive development of the nano industry, in particular, nano- and microelectronics. For example, a modified nanotube can be used as an element of a sensor device for detecting microenvironments of various substances, in particular metals included in salts and alkalis. The paper discusses the possibility of creating a high-performance sensor using single-layer boron-carbon nanotubes as a sensitive element, the surface of which is modified with a functional nitro group -NO2. Quantum-chemical studies of the process of attaching a nitro group to the outer surface of a single-layer boron-carbon nanotube (BCNT) of type (6, 6) were carried out, which proved the possibility of modifying the BCNT and the formation of a bond between the group -NO2 and the carbon atom of the surface of the nanotube. The results of computer simulation of interaction of surface-modified boron-carbon nanotube with alkali metal atoms (lithium, sodium, potassium) are presented. The sensory interaction of the modified boron-carbon nanosystem with the selected metal atoms was investigated, which proved the possibility of identifying these atoms using a nanotubular system that can act as an element of the sensor device. When reacting with alkali metal atoms in the “BСNT+NO 2” complex, the number of basic carriers increases, due to the transfer of electron density from metal atoms to modified BСNT. The results presented in this paper were obtained using the molecular cluster model and the calculated DFT method with exchange-correlation functionality B3LYP (valence-split basis set 6-31G).


2004 ◽  
Vol 46 (6) ◽  
pp. 1173-1178 ◽  
Author(s):  
I. V. Zaporotskova ◽  
N. G. Lebedev ◽  
L. A. Chernozatonskii

Chemosensors ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
Natalia Boroznina ◽  
Irina Zaporotskova ◽  
Sergey Boroznin ◽  
Evgeniy Dryuchkov

This article discusses the possibility of the fabrication of a highly sensitive sensor based on single-walled carbon nanotubes surface modified with functional amino groups (-NH2). The sensor potential for detection of alkali (sodium, lithium, and potassium) metals was investigated. The results of computer simulation of the interaction process between the sensor and an arbitrary surface of the modified tube containing atoms of the studied metals are presented. The calculations were carried out within the framework of the density functional theory (DFT) method using the molecular cluster model. It has been proved that surface-modified ammonium carbon nanotubes show high sensitivity for the metal atoms under study.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


2019 ◽  
Vol 16 (9) ◽  
pp. 705-717
Author(s):  
Mehrnoosh Khaleghian ◽  
Fatemeh Azarakhshi

In the present research, B45H36N45 Born Nitride (9,9) nanotube (BNNT) and Al45H36N45 Aluminum nitride (9,9) nanotube (AlNNT) have been studied, both having the same length of 5 angstroms. The main reason for choosing boron nitride nanotubes is their interesting properties compared with carbon nanotubes. For example, resistance to oxidation at high temperatures, chemical and thermal stability higher rather than carbon nanotubes and conductivity in these nanotubes, unlike carbon nanotubes, does not depend on the type of nanotube chirality. The method used in this study is the density functional theory (DFT) at Becke3, Lee-Yang-Parr (B3LYP) method and 6-31G* basis set for all the calculations. At first, the samples were simulated and then the optimized structure was obtained using Gaussian 09 software. The structural parameters of each nanotube were determined in 5 layers. Frequency calculations in order to extract the thermodynamic parameters and natural bond orbital (NBO) calculations have been performed to evaluate the electron density and electrostatic environment of different layers, energy levels and related parameters, such as ionization energy and electronic energy, bond gap energy and the share of hybrid orbitals of different layers.


Sign in / Sign up

Export Citation Format

Share Document