scholarly journals SVM based fault classification of three phase induction motor

2009 ◽  
Vol 2 (4) ◽  
pp. 1-4
Author(s):  
V.N. Ghate
2013 ◽  
Vol 18 (12) ◽  
pp. 11-19 ◽  
Author(s):  
Won-Chul Jang ◽  
Yong-Hoon Park ◽  
Myeong-Su Kang ◽  
Jong-Myon Kim

2020 ◽  
Vol 19 (1) ◽  
pp. 26-32
Author(s):  
Ayodele Isqeel Abullateef ◽  
Mohammed Faiz Sanusi ◽  
Olabanji Sunday Fagbolagun

Induction motors are used commonly for industrial operations due to their ease of operation coupled with ruggedness and reliability. However, they are subjected to stator faults which result in damage and consequently revenue losses. The classification of stator fault in a three-phase induction motor based on Adaptive neuro-fuzzy inference system (ANFIS) in combination with Principal Component Analysis (PCA) is proposed in this study. A burnt motor was redesigned and rewound while data acquisition was developed to acquire the current and vibration data needed for the fault classification. The data feature extraction for the fault classification was carried out by PCA while backpropagation and the least-squares algorithms were used for the training of the data. Three principal components, which severs as input for the ANFIS, were used to represent the entire data. The ANFIS was tested under four different paradigms, while the membership function type and epoch number were changed at each instant. The ANFIS model based on the triangular membership function and 10 epoch number was found appropriate and used, bringing the accuracy of the model to over 99% with the lowest ANFIS training RMSE error of      1.1795e-6. The ANFIS validation results of the fault classification show that the results are accurate, indicating that the PCA-ANFIS technique is applicable in fault diagnosis and classification of stator faults in induction motors.


2020 ◽  
Vol 24 (3) ◽  
pp. 417-424
Author(s):  
A.I. Abdullateef ◽  
O.S. Fagbolagun ◽  
M.F. Sanusi ◽  
M.F. Akorede ◽  
M.A. Afolayan

Induction motors are the backbone of the industries because they are easy to operate, rugged, economical and reliable. However, they are subjected to stator’s faults which damage the windings and consequently lead to machine failure and loss of revenue. Early detection and  classification of these faults are important for the effective operation of induction motors. Stators faults detection and classification based on  wavelet Transform was carried out in this study. The feature extraction of the acquired data was achieved using lifting decomposition and reconstruction scheme while Euclidean distance of the Wavelet energy was used to classify the faults. The Wavelet energies increased for all three conditions monitored, normal condition, inter-turn fault and phase-to-phase fault, as the frequency band of the signal decreases from D1 to A3. The deviations in the Euclidean Distance of the current of the Wavelet energy obtained for the phase-to-phase faults are 99.1909, 99.8239 and 87.9750 for phases A and B, A and C, B and C respectively. While that of the inter-turn faults in phases A, B and C are 77.5572, 61.6389 and 62.5581 respectively. Based on the Euclidean distances of the faults, Df and normal current signals, three classification points were set: K1 = 0.60 x 102, K2 = 0.80 x 102 and K3 = 1.00 x 102. For K2 ≥ Df ≥ K1 inter-turn faults is identified and for K3 ≥ Df ≥ K2 phase to phase fault identified. This will improve the induction motors stator’s fault diagnosis. Keywords: induction motor, stator fault classification, data acquisition system, Discrete Wavelet Transform


2014 ◽  
Vol 3 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Mohammed Obaid Mustafa ◽  
George Nikolakopoulos ◽  
Thomas Gustafsson

In every kind of industrial application, the operation of fault detection and diagnosis for induction motors is of paramount importance. Fault diagnosis and detection led to minimize the downtime and improves its reliability and availability of the systems. In this article, a fault classification algorithm based on a robust linear discrimination scheme, for the case of a squirrel–cage three phase induction motor, will be presented. The suggested scheme is based on a novel feature extraction mechanism from the measured magnitude and phase of current park's vector pattern. The proposed classification algorithm is applied to detect of two kinds of induction machine faults, which area) broken rotor bar, and b) short circuit in stator winding. The novel feature generation technique is able to transform the problem of fault detection and diagnosis into a simpler space, where direct robust linear discrimination can be applied for solving the classification problem. And thus a clear classification of the healthy and the faulty cases can be robustly performed, by having the optimal hyper plane. This method can separate the feature current classes in a low dimensional subspace. Robust linear discrimination has been one of the most widely used fault detection methods in real-life applications, as this methodology seeks for directions that are efficient for discrimination and at the same time applies a straight-forward implementation. The efficacy of the proposed scheme will be evaluated based on multiple simulation results in different fault types.


Sign in / Sign up

Export Citation Format

Share Document