Linking of West and East Flowing Rivers of Karnataka: Management of Surface Water and Groundwater in Drought Prone Areas

Author(s):  
R. H. Sawkar ◽  
R. Rudraiah ◽  
Madhav
2021 ◽  
Vol 772 ◽  
pp. 145516
Author(s):  
Hai-Yan Zou ◽  
Liang-Ying He ◽  
Fang-Zhou Gao ◽  
Min Zhang ◽  
Shuai Chen ◽  
...  

2007 ◽  
Vol 74 (2) ◽  
pp. 477-484 ◽  
Author(s):  
Jinhee Bae ◽  
Kellogg J. Schwab

ABSTRACT Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.


2021 ◽  
Author(s):  
Heng Wang ◽  
Lifa Zhou

<p>Hydraulic fracturing is one of the key technologies to stimulate shale gas production and may have some environmental impacts while enhancing shale gas development. Through the introduction of hydraulic fracturing technology from the design and construction aspects, analysis of its potential adverse environmental impacts in water resource consumption, surface water and groundwater pollution, geological disasters, and other aspects, and based on the existing problems to form targeted solutions.</p><p>According to EIA report, during the stimulation process of shale gas fracturing, the amount of water resources is about 10,000m<sup>3</sup>, of which 20%-80% can be returned, and the flowback rate of Shale gas in China is 20%-60%, which means that at least 20%-40% polluted water containing various chemical raw materials will be hidden in the formation for a long time. The shale flowback rate in China is significantly lower than that in the United States, not only due to formation conditions, but also due to equipment and technology. In view of this situation, it is necessary to control the whole process from design to construction.</p><p>In the design process of hydraulic fracturing of shale gas, real-time control of the fracture range is carried out in conjunction with seismic monitoring and software simulation fitting, so as to reduce the consumption of water resources on the premise of achieving the purpose of increasing production. Especially, to reducing the fracturing program as much as possible in the water-scarce areas, so as to ensure the security of public water resources. Reduce the use of chemical additives to alleviate the pollution of surface water and groundwater. After detection of possible pollution, determine the amount of pollution sources on site and carry out comprehensive pollutant recovery and treatment. Strictly prohibit high-risk pollution sources from entering the fracturing fluid process. At the same time, the fracturing fluid is used to recycled and purified. In terms of geological disasters caused by fracturing, high-risk geological disaster zones should be identified and monitored in advance to prevent large-scale geological activities caused by micro-earthquakes caused by fracturing from causing uncontrollable geological disasters.</p>


Sign in / Sign up

Export Citation Format

Share Document