scholarly journals A fault tree-based approach for aviation risk analysis considering mental workload overload

2021 ◽  
Vol 23 (4) ◽  
pp. 646-658
Author(s):  
Haiyang Che ◽  
Shengkui Zeng ◽  
Qidong You ◽  
Yueheng Song ◽  
Jianbin Guo

Many lives and aircrafts have been lost due to human errors associated with mental workload overload (MWLOL). Human errors are successfully considered in existing Fault Tree Analysis (FTA) methods. However, MWLOL is considered through Performance Shaping Factors indirectly and its information is hidden in FT construction, which is not conducive to analyze the root causes of human errors and risks. To overcome this difficulty, we develop a risk analysis method where Multiple Resources Model (MRM) is incorporated into FTA methods. MRM analyzes mental workload by estimating the resources used during performing concurrent tasks, probably including abnormal situation handling tasks introduced by basic events in FT. Such basic events may cause MWLOL and then trigger corresponding human error events. A MWLOL gate is proposed to describe MWLOL explicitly and add these new relationships to traditional FT. This new method extends previous FTA methods and provides a more in-depth risk analysis. An accident, a helicopter crash in Maryland, is analyzed by the proposed method.

Author(s):  
Majeed Abimbola ◽  
Faisal Khan ◽  
Vikram Garaniya ◽  
Stephen Butt

As the cost of drilling and completion of offshore well is soaring, efforts are required for better well planning. Safety is to be given the highest priority over all other aspects of well planning. Among different element of drilling, well control is one of the most critical components for the safety of the operation, employees and the environment. Primary well control is ensured by keeping the hydrostatic pressure of the mud above the pore pressure across an open hole section. A loss of well control implies an influx of formation fluid into the wellbore which can culminate to a blowout if uncontrollable. Among the factors that contribute to a blowout are: stuck pipe, casing failure, swabbing, cementing, equipment failure and drilling into other well. Swabbing often occurs during tripping out of an open hole. In this study, investigations of the effects of tripping operation on primary well control are conducted. Failure scenarios of tripping operations in conventional overbalanced drilling and managed pressure drilling are studied using fault tree analysis. These scenarios are subsequently mapped into Bayesian Networks to overcome fault tree modelling limitations such s dependability assessment and common cause failure. The analysis of the BN models identified RCD failure, BHP reduction due to insufficient mud density and lost circulation, DAPC integrated control system, DAPC choke manifold, DAPC back pressure pump, and human error as critical elements in the loss of well control through tripping out operation.


2011 ◽  
Vol 97-98 ◽  
pp. 825-830 ◽  
Author(s):  
Yong Tao Xi ◽  
Chong Guo

Safety is the eternal theme in shipping industry. Research shows that human error is the main reason of maritime accidents. Therefore, it is very necessary to research marine human errors, to discuss the contexts which caused human errors and how the contexts effect human behavior. Based on the detailed investigation of human errors in collision avoidance behavior which is the most key mission in navigation and the Performance Shaping Factors (PSFs), human reliability of mariners in collision avoidance was analyzed by using the integration of APJE and SLIM. Result shows that this combined method is effective and can be used for the research of maritime human reliability.


Author(s):  
Oladokun Sulaiman Olanrewaju

The traditional approach to the study of human factors in the maritime field involves the analysis of accidents without considering human factor reliability analysis. The main approaches being used to analyze human errors are statistical approach and probability theory approach. Another suitable approach to the study of human factors in the maritime industry is the quasi-experimental field study where variations in performance (for example attention) can be observed as a function of natural variations in performance shaping factors. This chapter analyzes result of modelling for human error and human reliability emanating from the use of technology on board ship navigation in coastal water areas by using qualitative and quantitative tools. Accident reports from marine department are used as empirical material for quantitative analysis. The literature on safety is based on common themes of accidents, the influence of human error resulting from technology usage design, accident reports from MAIB, and interventions information are used for qualitative assessment. Human reliability assessment involves analysis of accidents in waterways emanating from human-technology factors. The chapter reports enhancement requirement of the methodological issues with previous research study, monitoring, and deduces recommendations for technology modification of the human factors necessary to improve maritime safety performance. The result presented can contribute to rule making and safety management leading to the development of guidelines and standards for human reliability risk management for ships navigating within inland and coastal waters.


2018 ◽  
Vol 43 ◽  
pp. 248-260 ◽  
Author(s):  
Ana Paula Henriques de Gusmão ◽  
Maisa Mendonça Silva ◽  
Thiago Poleto ◽  
Lúcio Camara e Silva ◽  
Ana Paula Cabral Seixas Costa

Author(s):  
Caroline Morais ◽  
Raphael Moura ◽  
Michael Beer ◽  
Edoardo Patelli

Abstract Risk analyses require proper consideration and quantification of the interaction between humans, organization, and technology in high-hazard industries. Quantitative human reliability analysis approaches require the estimation of human error probabilities (HEPs), often obtained from human performance data on different tasks in specific contexts (also known as performance shaping factors (PSFs)). Data on human errors are often collected from simulated scenarios, near-misses report systems, and experts with operational knowledge. However, these techniques usually miss the realistic context where human errors occur. The present research proposes a realistic and innovative approach for estimating HEPs using data from major accident investigation reports. The approach is based on Bayesian Networks used to model the relationship between performance shaping factors and human errors. The proposed methodology allows minimizing the expert judgment of HEPs, by using a strategy that is able to accommodate the possibility of having no information to represent some conditional dependencies within some variables. Therefore, the approach increases the transparency about the uncertainties of the human error probability estimations. The approach also allows identifying the most influential performance shaping factors, supporting assessors to recommend improvements or extra controls in risk assessments. Formal verification and validation processes are also presented.


2016 ◽  
Vol 22 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Florin Nicolae ◽  
A. Cotorcea ◽  
Marian Ristea ◽  
Dinu Atodiresei

Abstract The work integrates the human error term in the broader concept of human performance analysis. The main issues associated with human error and human reliability are highlighted step by step, resulting from the review of literature, from the perspective of the relationship between risk and safety. To assess the risks arising from human error and to reduce vulnerability of work, methods derived from the probabilistic assessment of the work safety systems are used. To identify the risks caused by the human error, the authors propose the Fault Tree Analysis (FTA) method. The paper reveals the way the method is used for identifying the critical subsystems for the functioning of a given system and analyzes how unwanted events and their causes arise and occur. Also, a case study that is investigated throuhg the FTA method and that consists in the analysis of an accident that occurred in Evangelos Florakis naval logistics base from Cyprus, is presented.


Sign in / Sign up

Export Citation Format

Share Document