Failure Analysis of the Tripping Operation and its Impact on Well Control

Author(s):  
Majeed Abimbola ◽  
Faisal Khan ◽  
Vikram Garaniya ◽  
Stephen Butt

As the cost of drilling and completion of offshore well is soaring, efforts are required for better well planning. Safety is to be given the highest priority over all other aspects of well planning. Among different element of drilling, well control is one of the most critical components for the safety of the operation, employees and the environment. Primary well control is ensured by keeping the hydrostatic pressure of the mud above the pore pressure across an open hole section. A loss of well control implies an influx of formation fluid into the wellbore which can culminate to a blowout if uncontrollable. Among the factors that contribute to a blowout are: stuck pipe, casing failure, swabbing, cementing, equipment failure and drilling into other well. Swabbing often occurs during tripping out of an open hole. In this study, investigations of the effects of tripping operation on primary well control are conducted. Failure scenarios of tripping operations in conventional overbalanced drilling and managed pressure drilling are studied using fault tree analysis. These scenarios are subsequently mapped into Bayesian Networks to overcome fault tree modelling limitations such s dependability assessment and common cause failure. The analysis of the BN models identified RCD failure, BHP reduction due to insufficient mud density and lost circulation, DAPC integrated control system, DAPC choke manifold, DAPC back pressure pump, and human error as critical elements in the loss of well control through tripping out operation.

Author(s):  
Syamsul Bahri ◽  
Fatimah Fatimah ◽  
Saifuddin Muhammad Jalil ◽  
Amri Amri ◽  
Muhammad Ilham

A sterilizer is a pressurized steam vessel used to boil palm oil. The condition of the sterilizer at PT .X often emits steam at the door and body of the stew. Throughout 2020, there were 12 critical components that were frequently damaged, such as ball valve, actuator, exhaust valve, packing door, elbow, condensate nozzle, liner, pipe, condensate valve, strainer valve, pipe flange, and packing flange. Fault Tree Analysis is an analysis tool that graphically translates the combinations of errors that cause system failures. Reliability Block Diagram is a diagramming method for showing how reliability components contribute to the success or failure of a complex system. Based on the results of the failure calculation using fault tree analysis, the probability of failure of the horizontal sterilizer component is the ball valve 12.2%, exhaust valve 10.9% actuator 6%, door packing 0.24%, elbow 0.24%, condensate nozzle 4.8%, liner 8.61%, 0.25% pipe, 0.21% condensate valve, 4.4% filter valve, 0.22% pipe flange and 0.27% packing flange. The reliability value of the horizontal sterilizer from the calculation using the reliability block diagram is 85.69% if it operates for 8 hours, 62.93% if it operates for 27 hours, 39.6% if it operates for 54 hours, 13.34% if it operates for 117 hours. o'clock. o'clock. o'clock. hours and 1.81% when operating for 234 hours. To maintain reliability above 60%, the preventive maintenance schedule is: Every 80 hours of operation a door packing inspection is carried out. Every 234 hours of operation, elbow tubing and flanges are checked. Every 300 hours of operation, a pipe inspection is carried out. Every 450 operational hours an inspection is carried out on the ball valve, condensate nozzle, liner, actuator, and exhaust valve. Every 30 hours of operation, valve condensate, filter valves and packing flanges are checked.


2016 ◽  
Vol 22 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Florin Nicolae ◽  
A. Cotorcea ◽  
Marian Ristea ◽  
Dinu Atodiresei

Abstract The work integrates the human error term in the broader concept of human performance analysis. The main issues associated with human error and human reliability are highlighted step by step, resulting from the review of literature, from the perspective of the relationship between risk and safety. To assess the risks arising from human error and to reduce vulnerability of work, methods derived from the probabilistic assessment of the work safety systems are used. To identify the risks caused by the human error, the authors propose the Fault Tree Analysis (FTA) method. The paper reveals the way the method is used for identifying the critical subsystems for the functioning of a given system and analyzes how unwanted events and their causes arise and occur. Also, a case study that is investigated throuhg the FTA method and that consists in the analysis of an accident that occurred in Evangelos Florakis naval logistics base from Cyprus, is presented.


Author(s):  
Marc L. Resnick

After a system failure that is attributed to human error, an accurate accounting of the factors that led to the error is critical for redesign efforts and any resulting litigation. Without data on the design components or environmental factors that contributed to the error, the human is indicted, either legally or in the press, no system redesign is conducted and the failure will be repeated at the cost of additional damage and/or lives. However, rarely is the human at fault because of intentional negligence. There are always design or environmental factors that interacted with the person's training, knowledge, motivation and other factors that can be affected by the system. Accident investigations must be conducted to identify these factors and guide redesign efforts. An even better situation would be if this same testing occurred before the system was released to the market. This requires prediction and simulation of the people who will use the system, the tasks that will be attempted, the motivations of system users, and the environmental factors that will interact with the system. Testing systems under controlled laboratory conditions is generally insufficient to identify potential sources of human error. This paper describes the critical components of task-based evaluation and presents a case study to illustrate the consequences of failure to use TBE.


2020 ◽  
Vol 2 (1) ◽  
pp. 56-63
Author(s):  
Eka Budi Tjahyono ◽  
Fahmi Umasangaji ◽  
Leonardo Prakarsa

Kecelakaan pelayaran terus meningkat disertai korban meninggal/hilang dan luka-luka cukup banyak. Penyebab kecelakaan bervariasi ada yang disebabkan kesalahan manusia, muatan lebih, pengelolaan angkutan, faktor teknis, dan faktor alam, namun penyebabnya tidak selalu tunggal tetapi kebanyakan kombinasi dan faktor yang dominan adalah kesalahan manusianya (human error) sebanyak 88%. Semua kapal mempunyai resiko terjadinya musibah/kecelakaan pelayaran, apakah kapalnya kandas/karam, tenggelam, tubrukan, dan terbakar. Untuk itu diperlukan segala daya upaya untuk mengatasi kemungkinan terjadinya musibah/kecelakaan pelayaran, termasuk Kapal MV PAN Kristine yang sedang lego jangkar di anchorage Pelabuhan Zhousan Cina untuk menunggu doking melakukan perawatan ringan yang menghadapi cuaca buruk (typhoon) dan kondisi pengkait/pengikat (lashings) yang tidak terawat dengan baik, yang di dalam pelayaran tersebut terdapat Cadet Leonardo Prakarsa ikut dalam pelayaran sebagai pelaut yang mengikuti Praktek Laut. Penelitian ini bertujuan untuk mengetahui dan menghadapi langkah yang diperlukan dalam menghadapi cuaca buruk (typhoon) serta untuk mengetahui kondisi lashings ketika kapal terkena akibat tidak langsung dari pusat typhoon karena kapal sempat menjauh dan langkah perawatannya. Penelitian ini menggunakan pendekataan kualitatif karena Peneliti terlibat langsung dalam peristiwa serangan typhoon dengan mengumpulkan data melalui observasi dan wawancara dengan Nokhoda dan dan perwira jaga setelah peristiwa tersebut, melalui model penelitian studi kasus. Teknik analisis yang digunakan adalah model fault tree analysis (FTA). Dalam penelitian dihasilkan temuan ketidaksiapan secara teknis dan manajerial dari awak kapal ketika terjadi cuaca buruk yang tidak diperkirakan sebelumnya dalam pelayaran mengangkut muatan maupun pada saat menunggu jadwal doking karena kasusnya pada saat itu kapal memang sedang lego jangkar di anchorage di Pelabuhan Zhousan Cina


2021 ◽  
Vol 23 (4) ◽  
pp. 646-658
Author(s):  
Haiyang Che ◽  
Shengkui Zeng ◽  
Qidong You ◽  
Yueheng Song ◽  
Jianbin Guo

Many lives and aircrafts have been lost due to human errors associated with mental workload overload (MWLOL). Human errors are successfully considered in existing Fault Tree Analysis (FTA) methods. However, MWLOL is considered through Performance Shaping Factors indirectly and its information is hidden in FT construction, which is not conducive to analyze the root causes of human errors and risks. To overcome this difficulty, we develop a risk analysis method where Multiple Resources Model (MRM) is incorporated into FTA methods. MRM analyzes mental workload by estimating the resources used during performing concurrent tasks, probably including abnormal situation handling tasks introduced by basic events in FT. Such basic events may cause MWLOL and then trigger corresponding human error events. A MWLOL gate is proposed to describe MWLOL explicitly and add these new relationships to traditional FT. This new method extends previous FTA methods and provides a more in-depth risk analysis. An accident, a helicopter crash in Maryland, is analyzed by the proposed method.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Mirna Apriani

Amonia merupakan bahan kimia bahan berbahaya dan beracun, dapat menimbulkan luka bakar bahkan kematian. Pelepasan amonia dari tangki penyimpanan memiliki potensi bahaya bagi pekerja dan manusia di lingkungan sekitar. Amonia cair mudah terlepas ke lingkungan karena dapat berubah menjadi gas pada temperatur ruang. Penelitian dilakukan untuk menganalisis risiko tinggi dan menentukan basic cause kebocoran pada tangki penyimpanan. Analisis risiko tinggi akan didahului dengan identifikasi potensi bahaya menggunakan metoda Failure Mode Equipment Analysis (FMEA). Untuk mengetahui basic cause dilakukan menggunakan Fault Tree Analysis (FTA). Hasil FMEA didapatkan risiko tertinggi adalah fail close flow control valve. (FCV). Hasil FTA basic cause dari fail close FCV adalah perawatan buruk, umur pemakaian, pressure indicator error/jarang dikalibrasi. Pencegahan kegagalan semua komponen yang mendukung kinerja FCV adalah perawatan sesuai jadwal agar dapat mencegah kerusakan sebelum masa efektif komponen. Selain perawatan sesuai jadwal juga dilakukan pelatihan kepada operator agar kompeten untuk mengurangi human error.


Author(s):  
Yustina Ngatilah ◽  
Endang Pudji W ◽  
Rr Rochmoeljati ◽  
Tranggono Tranggono

Seluruh industri pasti memiliki keinginan untuk memiliki zero accident. Namun pada kenyataannya banyak perusahaan yang memiliki angka kecelakaan yang tinggi tiap tahunnya. Human Reliability Assessment merupakan salah satu metode untuk memberi usulan alternatif pengurangan terhadap kecelakaan kerja yang terjadi. Dimana langkah yang digunakan yakni mengumpulkan data kecelakaan kerja,data Task Analysis Sistem dan data identifikasi kegagalan. Pengolahan yang dilakukan yakni dengan penggambaran kecelakaan kerja menggunakan Fault Tree Analysis,kemudian kuantifikasi nilai Human Error Probability dengan metode Human Error And Reduction Technique dan pada akhirnya akan ditemukan usulan alternatif pengurangan kecelakaan kerja. Hasil dari penelitian ini adalah mengidentifikasi kesalahan manusia yang menimbulkan kecelakaan kerja. Kesalahan karyawan tersebut antara lain posisi pemotongan kurang benar dengan probabilitas tertinggi yaitu 0,728, untuk yang lain seperti gagal memposisikan saat pengambilan material, salah posisi dalam melakukan prosedur,tidak fokus dalam melakukan proses,tidak memperhatikan posisi kayu dan terburu-buru dalam melakukan prosedur probabilitasnya dibawah 0,728.


Author(s):  
Yao Li ◽  
Frank PA Coolen

Due to the high failure rates and the high cost of operation and maintenance of wind turbines, not only manufacturers but also service providers try many ways to improve the reliability of some critical components and subsystems. In reality, redundancy design is commonly used to improve the reliability of critical components and subsystems. The load dependencies and failure dependencies among redundancy components and subsystems are crucial to the reliability assessment of wind turbines. However, the redundancy components are treated as a parallel system, and the load correlations among them are ignored in much literature, which may lead to the wrong system’s reliability and much higher costs. For this reason, this article explores the influences of load-sharing on system reliability. The whole system’s reliability is quantitatively evaluated using fault tree analysis and the Markov-chain method. Following this, the optimisation of the redundancy allocation problem considering the load-sharing is conducted to maximise the system reliability and reduce the total cost of the system subjecting to the available system cost and space. The results produced by this methodology can show a realistic reliability assessment of the entire wind turbine from a quantitative point of view. The realistic reliability assessment can help to design a cost-effective and more reliable system and significantly reduce the cost of wind turbines.


Sign in / Sign up

Export Citation Format

Share Document