scholarly journals Optimization of AA5083 Friction Stir Welding Parameters Using Taguchi Method

2010 ◽  
Vol 636-637 ◽  
pp. 1150-1156 ◽  
Author(s):  
Rui Louro ◽  
Carlos Leitão ◽  
Helena Gouveia ◽  
Altino Loureiro ◽  
Dulce Maria Rodrigues

The task of obtaining suitable welding parameters for the friction stir welding process is often a difficult one, due to the lack of published data and the fact that the exact mechanism by which the process operates has not yet been fully determined. Therefore, suitable welding parameters often need to be obtained by using extensive, time consuming and expensive experimental methods. The work detailed in this paper pertains to the use of the Taguchi method as a mean to reduce the disadvantages of these experimental methods, more specifically, their cost. The Taguchi method accomplishes this task by substantially reducing the number of welding trials that are needed to obtain suitable welding parameters. This reduction leads to the parameters being obtained more rapidly and at a substantially smaller cost. In this paper a procedure for applying the Taguchi method to the friction stir welding process is presented as well as its application to the welding of a specific component. The method was applied to the welding of 4mm thick AA5083-H111 plates in a butt joint configuration, which constitutes one of the most common industrial welding scenarios. The purpose of the experimental tests was to maximize the welding speed whilst ensuring an acceptable welding quality. The quality of the welds was determined through visual inspection and tensile and bending tests. The application of the Taguchi method allowed, with a relatively small number of experimental welds, to provide some insight into the manner by which the parameters should be altered in order to optimize the process.


2014 ◽  
Vol 974 ◽  
pp. 408-412 ◽  
Author(s):  
Mohamed Ackiel Mohamed ◽  
Yupiter HP Manurung ◽  
Mohammad Ridzwan Abdul Rahim ◽  
Norasiah Muhammad ◽  
Farizah Adliza Ghazali

This paper presents an unconventional method to optimize the governing process parameters of Friction Stir Welding (FSW) towards the mechanical properties and weld quality. The optimization approach attempts to consider simultaneously the multiple quality characteristics namely tensile strength, nugget zone hardness and weld quality class using Multi-objective Taguchi Method (MTM). The experimental study was conducted for plate thickness of 6.0 mm under different rotational and traverse speed. The optimum welding parameters were investigated using Taguchi method with L9 orthogonal array. The significant level of the welding parameters is to be investigated by using analysis of variance (ANOVA). Furthermore, the optimum value was analyzed by means of MTM which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR).


Author(s):  
Parviz Asadi ◽  
Mostafa Akbari ◽  
Mohammad Kazem Besharati Givi ◽  
Masoud Shariat Panahi

2019 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Azzam Sabah Albunduqee ◽  
Hussein R Al-Bugharbee

Friction Stir Welding is one of the technologies of joining solid states, which still attracts the researchers’ interest.  In welded joints the mechanical properties are affected by a number of mechanical properties of the joined materials and by the process parameters as well. In the present study, the effect of a number of friction stir welding parameters on the tensile strength of the welded joint have been investigated using the Taguchi method and the analysis of variance (ANOVA). The study considers different levels of friction stir welding variables; namely, different rotational speeds of (2000, 1600, 1250 rpm), different welding speeds (12.5, 16, 20 mm / min), and different welding tilt angles (0, 1, 2 degrees).  The optimum process parameters and their contribution rate were selected based on the Taguchi method for test design and by using the Minitab 16 program. In this study, the best results (i.e, higher tensile strength) were obtained at a rotational velocity of 1600 rpm, linear velocity of 16 mm / min, and welding angle, 1o. The highest tensile strength was obtained under these conditions.                                                                                       


Sign in / Sign up

Export Citation Format

Share Document