scholarly journals Mechanical Properties of Bitumen Quenched Dual Phase Steel

2017 ◽  
Vol 46 (5) ◽  
pp. 743-753 ◽  
Author(s):  
Amuda M.O.H. ◽  
Olaniyan T.A. ◽  
Osoba L.O. ◽  
Akinlabi E.T.
Author(s):  
Frederik Scherff ◽  
Jessica Gola ◽  
Sebastian Scholl ◽  
Kinshuk Srivastava ◽  
Thorsten Staudt ◽  
...  

AbstractDual-phase steel shows a strong connection between its microstructure and its mechanical properties. This structure–property correlation is caused by the composition of the microstructure of a soft ferritic matrix with embedded hard martensite areas, leading to a simultaneous increase in strength and ductility. As a result, dual-phase steels are widely used especially for strength-relevant and energy-absorbing sheet metal structures. However, their use as heavy plate steel is also desirable. Therefore, a better understanding of the structure–property correlation is of great interest. Microstructure-based simulation is essential for a realistic simulation of the mechanical properties of dual-phase steel. This paper describes the entire process route of such a simulation, from the extraction of the microstructure by 3D tomography and the determination of the properties of the individual phases by nanoindentation, to the implementation of a simulation model and its validation by experiments. In addition to simulations based on real microstructures, simulations based on virtual microstructures are also of great importance. Thus, a model for the generation of virtual microstructures is presented, allowing for the same statistical properties as real microstructures. With the help of these structures and the aforementioned simulation model, it is then possible to predict the mechanical properties of a dual-phase steel, whose three-dimensional (3D) microstructure is not yet known with high accuracy. This will enable future investigations of new dual-phase steel microstructures within a virtual laboratory even before their production.


2021 ◽  
Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.


2020 ◽  
Vol 128 ◽  
pp. 102677 ◽  
Author(s):  
S.S. Xu ◽  
J.P. Li ◽  
Y. Cui ◽  
Y. Zhang ◽  
L.X. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document