Microstructural and Tribological Characterization of API X52 Dual-Phase Steel

Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.

2014 ◽  
Vol 59 (4) ◽  
pp. 1257-1261
Author(s):  
K. Miernik ◽  
S. Pytel

Abstract The paper presents results of microstructure and mechanical properties of the dual phase (DP) steel plate with 12 mm thickness produced by intercritical annealing at a two-phase region of ferrite and austenite (α + γ) and direct quenching in water. In addition the tempering treatment at temperature of 650°C was applied to investigate effect of martensite softening on mechanical properties of the tested steel. The parameters of heat treatment were designed to achieve the high strength while retaining optimum impact strength of the DP steel.


2015 ◽  
Vol 808 ◽  
pp. 28-33 ◽  
Author(s):  
Constantin Dulucheanu ◽  
Nicolai Bancescu ◽  
Traian Severin

In this article, the authors have analysed the influence of quenching temperature (TQ) on the mechanical properties of a dual-phase steel with 0.094 % C and 0.53% Mn. In order to obtain a ferrite-martensite structure, specimens of this material have been the subjected to intercritical quenching that consisted of heating at 750, 770, 790, 810 and 830 °C, maintaining for 30 minutes and cooling in water. These specimens have then been subjected to metallographic analysis and tensile test in order to determine the volume fraction of martensite (VM) in the structure, ultimate tensile strength (Rm), the 0.2% offset yield strength (Rp0.2), the total elongation (A5) and the Rp0.2/Rm ratio.


2020 ◽  
Vol 44 (6) ◽  
pp. 381-386
Author(s):  
Walid Laroui ◽  
Redouane Chegroune ◽  
Şükrü Talaş ◽  
Mourad Keddam ◽  
Riad Badji

Dual Phase steels are widely used in industry for various reasons for their improved mechanical properties owing to their ferrite and martensite contents in microstructure and good formability at industrial scale to achieve final shape with good ductility. In this study, shielded metal arc welding experiments were performed in order to evaluate the metallurgically and mechanically the properties of Dual Phase steels obtained from plain carbon steel AISI 1010 by water quenching at intercritical temperatures. Martensite volume fraction (MVF) was related to the intercritical quenching temperature which defines the mechanical properties of Dual Phase steel. All the welding parameters were kept constant in order to get a value of heat input equals 1.37 KJ/mm for all weldments. Martensite was found to be predominated in the fusion zone and its hardness was the highest compared to base metal (BM) and heat affected zone (HAZ). The extent of ductile zone was found to be dependent on the MVF and reached over 1.2 mm wide. Tensile properties of weldments were deteriorated by 35% in ultimate tensile strength (UTS) and by 15% in elongation. The failure of all the welded joints was occurred in the SC zone, with the fractured surfaces of a dimple feature.


Sign in / Sign up

Export Citation Format

Share Document