scholarly journals Diesel Engine Crankshaft High Cycle Fatigue Life Estimation and Improvement Through FEA

Author(s):  
Mr. Suraj K. Kolhe ◽  
Mr. Amit Chaudhari ◽  
Mr. Prafull Ghare ◽  
Dr. J. V. L. Venkatesh ◽  
2019 ◽  
Vol 42 (7) ◽  
pp. 1454-1466 ◽  
Author(s):  
Even W. Hovig ◽  
Amin S. Azar ◽  
Martin F. Sunding ◽  
Erik Andreassen ◽  
Knut Sørby

Author(s):  
Vinayaka Nagarajaiah ◽  
Nilotpal Banerjee ◽  
B. S. Ajay Kumar ◽  
Kumar K. Gowda ◽  
Tulsidas Dalappa

This work is focused on developing a technique to assess high cycle fatigue of shrouded HP compressor blades subjected to thermo-mechanical loads like centrifugal stresses, vibratory stresses and thermal stresses in a gas turbine rotor. In practice, the blades are also subjected to resonance condition during steady or transient conditions of operation when passing through critical speeds. Hence, shrouds are added initially at 3/4 length along blade height which helps in reducing vibration amplitude by providing suitable stiffness to the blade and hence better structural integrity. Industrial best practice like Campbell diagram is used for the above purpose. Two approaches employed here for fatigue analysis are linear Finite element analysis (FEA) and Elasto-Plastic FEA. Fictive elastic results are recalculated using Neuber’s Rule. Strain amplitude approach is followed and Coffin-Manson Equation is used to determine the number of start-up and shut-down cycles. Design and analysis is performed using ANSYS 14.5 tool for reliable fatigue life estimation and to predict catastrophic failure due to High Cycle Fatigue.


Author(s):  
Jan Papuga ◽  
Matúš Margetin ◽  
Vladimír Chmelko

The paper discusses solutions used for estimating fatigue life under variable amplitude multiaxial loading in the high-cycle fatigue domain. Various concurring effects are treated, and their proposed solutions are commented upon. The focus is on the categories of the phase shift effect and of cycle counting. It is concluded that the available experimental data are not sufficient to substantiate a clear decision to follow a definite algorithm. An example of own new experimental data is provided, and the fatigue life estimation run to highlight some more points open for discussion.


2014 ◽  
Vol 654 ◽  
pp. 65-68
Author(s):  
Ling Jin Wang ◽  
Dan Li ◽  
Xiu Xia Lu ◽  
Pei Fan Li ◽  
Ying Jun Jia

Crankshaft is one of the key parts of the diesel engine. Several causes would be lead to the failure of the crankshaft. A novel strength analysis method is used for crankshaft high cycle fatigue simulation of the diesel engine based on flexible multi-body dynamics in this paper. In order to investigate the fatigue strength of other parts of the diesel engine at the same time, a complete coupled dynamic model of diesel engine crankshaft and block is built and coupled dynamics simulation is carried out. Then dynamics calculation results of each part is extracted for high cycle fatigue analysis and the reliability research of the crankshaft, The simulation results show that, the minimum safety factors of the crankshaft is 1.301, it meet the strength requirements, the safety factors of the block and the cap could be calculated at the same time. These suggest that this method can guide the design of the diesel engine crankshaft and has gained significant importance in practical study.


Sign in / Sign up

Export Citation Format

Share Document