fatigue estimation
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 32)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dujuan Li ◽  
Caixia Chen

Abstract Purpose. Fatigue estimation is of great significance to improve the accuracy of intention recognition and avoid secondary injury in Pilates rehabilitation. Surface electromyography (sEMG) is used to estimate fatigue with low and unstable recognition rates. To improve the rate, this paper fused electrocardiogram (ECG) signal and sEMG signal under three different states, and the classification model of the improved proved particle swarm optimization support vector machine (IPSO-SVM) algorithm was established. Methods. Twenty subjects performed 150 minutes of Pilates rehabilitation exercise. ECG and sEMG signals were collected at the same time. After necessary preprocessing, the IPSO-SVM classification model based on feature fusion was established to identify three different fatigue states (relaxed, transition, and tired). The model effects of different classification algorithms and different fused data types were compared. Results. Compared with common physiological signal classification methods such as BP neural network algorithm(BPNN), K-nearest neighbor(KNN), and Linear discriminant analysis(LDA), IPSO-SVM had obvious advantages in the classification effect of sEMG and ECG signals, the average recognition rate was 87.83%. The recognition rates of sEMG and ECG fusion feature classification models were 94.25%, 92.25%, 94.25%. The recognition accuracy and model performance was significantly improved. Conclusion. The sEMG and ECG signal after feature fusion form a complementary mechanism. At the same time, IPOS-SVM can accurately detect the fatigue state in the process of Pilates rehabilitation. This study establishes technical support for establishing relevant man-machine devices and improving the safety of Pilates rehabilitation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6564
Author(s):  
Michal Dziendzikowski ◽  
Artur Kurnyta ◽  
Piotr Reymer ◽  
Marcin Kurdelski ◽  
Sylwester Klysz ◽  
...  

In this paper, we present an approach to fatigue estimation of a Main Landing Gear (MLG) attachment frame due to vertical landing forces based on Operational Loads Monitoring (OLM) system records. In particular, the impact of different phases of landing and on ground operations and fatigue wear of the MLG frame is analyzed. The main functionality of the developed OLM system is the individual assessment of fatigue of the main landing gear node structure for Su-22UM3K aircraft due to standard and Touch-And-Go (T&G) landings. Furthermore, the system allows for assessment of stress cumulation in the main landing gear node structure during touchdown and allows for detection of hard landings. Determination of selected stages of flight, classification of different types of load cycles of the structure recorded by strain gauge sensors during standard full stop landings and taxiing are also implemented in the developed system. Based on those capabilities, it is possible to monitor and compare equivalents of landing fatigue wear between airplanes and landing fatigue wear across all flights of a given airplane, which can be incorporated into fleet management paradigms for the purpose of optimal maintenance of aircraft. In this article, a detailed description of the system and algorithms used for landing gear node fatigue assessment is provided, and the results obtained during the 3-year period of system operation for the fleet of six aircraft are delivered and discussed.


2021 ◽  
Vol 137 ◽  
pp. 104839
Author(s):  
Yanran Jiang ◽  
Peter Malliaras ◽  
Bernard Chen ◽  
Dana Kulić

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5006
Author(s):  
Andrés Aguirre ◽  
Maria J. Pinto ◽  
Carlos A. Cifuentes ◽  
Oscar Perdomo ◽  
Camilo A. R. Díaz ◽  
...  

Physical exercise (PE) has become an essential tool for different rehabilitation programs. High-intensity exercises (HIEs) have been demonstrated to provide better results in general health conditions, compared with low and moderate-intensity exercises. In this context, monitoring of a patients’ condition is essential to avoid extreme fatigue conditions, which may cause physical and physiological complications. Different methods have been proposed for fatigue estimation, such as: monitoring the subject’s physiological parameters and subjective scales. However, there is still a need for practical procedures that provide an objective estimation, especially for HIEs. In this work, considering that the sit-to-stand (STS) exercise is one of the most implemented in physical rehabilitation, a computational model for estimating fatigue during this exercise is proposed. A study with 60 healthy volunteers was carried out to obtain a data set to develop and evaluate the proposed model. According to the literature, this model estimates three fatigue conditions (low, moderate, and high) by monitoring 32 STS kinematic features and the heart rate from a set of ambulatory sensors (Kinect and Zephyr sensors). Results show that a random forest model composed of 60 sub-classifiers presented an accuracy of 82.5% in the classification task. Moreover, results suggest that the movement of the upper body part is the most relevant feature for fatigue estimation. Movements of the lower body and the heart rate also contribute to essential information for identifying the fatigue condition. This work presents a promising tool for physical rehabilitation.


Author(s):  
Jan Papuga ◽  
Matúš Margetin ◽  
Vladimír Chmelko

The paper discusses solutions used for estimating fatigue life under variable amplitude multiaxial loading in the high-cycle fatigue domain. Various concurring effects are treated, and their proposed solutions are commented upon. The focus is on the categories of the phase shift effect and of cycle counting. It is concluded that the available experimental data are not sufficient to substantiate a clear decision to follow a definite algorithm. An example of own new experimental data is provided, and the fatigue life estimation run to highlight some more points open for discussion.


2021 ◽  
pp. 1-40
Author(s):  
Yuangang Pan ◽  
Ivor W. Tsang ◽  
Yueming Lyu ◽  
Avinash K Singh ◽  
Chin-Teng Lin

Driver mental fatigue leads to thousands of traffic accidents. The increasing quality and availability of low-cost electroencephalogram (EEG) systems offer possibilities for practical fatigue monitoring. However, non-data-driven methods, designed for practical, complex situations, usually rely on handcrafted data statistics of EEG signals. To reduce human involvement, we introduce a data-driven methodology for online mental fatigue detection: self-weight ordinal regression (SWORE). Reaction time (RT), referring to the length of time people take to react to an emergency, is widely considered an objective behavioral measure for mental fatigue state. Since regression methods are sensitive to extreme RTs, we propose an indirect RT estimation based on preferences to explore the relationship between EEG and RT, which generalizes to any scenario when an objective fatigue indicator is available. In particular, SWORE evaluates the noisy EEG signals from multiple channels in terms of two states: shaking state and steady state. Modeling the shaking state can discriminate the reliable channels from the uninformative ones, while modeling the steady state can suppress the task-nonrelevant fluctuation within each channel. In addition, an online generalized Bayesian moment matching (online GBMM) algorithm is proposed to online-calibrate SWORE efficiently per participant. Experimental results with 40 participants show that SWORE can maximally achieve consistent with RT, demonstrating the feasibility and adaptability of our proposed framework in practical mental fatigue estimation.


2021 ◽  
pp. 83-110
Author(s):  
Maria J. Pinto-Bernal ◽  
Andres Aguirre ◽  
Carlos A. Cifuentes ◽  
Marcela Munera

Sign in / Sign up

Export Citation Format

Share Document