Ground movement monitoring during mine flooding and closure at Lebyazhin deposit

2017 ◽  
pp. 18-22 ◽  
Author(s):  
S. V. Usanov ◽  
◽  
A. V. Usanova ◽  
Author(s):  
Jack Park ◽  
Lisa Wheeler ◽  
Katherine Johnston ◽  
Mike Statters

Abstract When new pipelines are constructed, they often cross existing major infrastructure, such as railways. To reduce potential service disruption, it is a common practice to complete these crossings using trenchless technologies. Without proper methods and oversight in planning and construction, there may be serious safety and financial implications to the operators of the railways and the public due to unacceptable settlement or heave. If movement tolerances are exceeded, the schedule and financial loss to the railway operators could be in the millions of dollars per day. Recent construction of a new pipeline across the Canadian prairies implemented ground movement monitoring plans at 19 trenchless railway crossings in order to reduce the potential for impact to the track and railway operations. The specifics of the plan varied for each site and were based on the expected ground conditions, as well as permit requirements from the various railway operators, but typically included ground movement monitoring surveys, observation of the cuttings, recommendations for a soil plug at the leading edge of the bore casing, and frequent communication with both the railway operators and the contractors. For all crossings, the expected soil and groundwater conditions were obtained from pre-construction boreholes and confirmed during excavation of the bore bays. Based on the expected ground conditions, appropriate soil plug lengths, if required, were recommended. In general, fine-grained clay/silt-dominated soils needed minimal to no soil plug in order to minimize the potential for ground heave, while coarser-grained sand-dominated soils needed a longer soil plug in order to reduce the potential for “flowing soil” which would cause over excavation along the bore path. Prior to boring, surface monitoring points were established along the tracks to monitor for changes in the ground surface elevation. Additional subsurface points were installed for crossings where the potential for over excavation was higher. These monitoring points were surveyed before, throughout, and following completion of construction, and the frequency of the surveys was increased when the movement was nearing or exceeding specified tolerances. The effort to monitor and reduce the potential for ground movement was a coordinated effort between the geotechnical engineers, railway operators, and construction contractors. The purpose of this paper is to present the lessons learned from the 19 trenchless railway crossings, including the challenges and successes. Recommendations for ground movement monitoring are also provided to help guide railway operators, design and geotechnical engineers, and contractors during the construction of future trenchless pipeline crossings of railway infrastructure.


2021 ◽  
Vol 2126 (1) ◽  
pp. 012002
Author(s):  
S Saehana ◽  
A Lala

Abstract This study aims to create an alarm tool that can detect disasters such as earthquakes and liquefaction in Palu City. It was laboratory research conducted in Sub department of Physics Education, Tadulako University. Research and experiments with modelling tools were conducted to simulate soil conditions during the earthquake and liquefaction. The research sample was focused on soil samples that have been affected by liquefaction disasters. The method used was the waterfall with the procedures of requirements analysis, system design, implementation, and testing of Arduino programs and software as ground movement monitoring. This study indicated that a liquefaction alarm prototype using a microcontroller component in the form of Arduino Uno, soil moisture sensor, and MPU6050 sensor could detect a natural liquefaction disaster was signed by a siren sound.


Author(s):  
Mohammad Idhom ◽  
Fetty Tri Anggraeny ◽  
Gideon Setya Budiwitjaksono ◽  
Zainal Abidin Achmad ◽  
Munoto

Landslide is one of the disasters that often occurs in several areas in Indonesia, especially in hilly areas, valleys, and volcanoes. Soil conditions in some parts of Indonesia are classified as prone to landslides. The latest data from the Central Statistics Agency related to landslides in 2018 occurred as many as 10,246 events with the highest incidence on the island of Java IoT-based ground motion monitoring using fuzzy logic is a tool that is able to detect ground movements that can trigger landslides. The manufacture of this tool is based on the ig-norance of the community in predicting the occurrence of landslides. To avoid this, an early warning tool is needed in the delivery of information that is easily understood by anyone, especially the public. This tool consists of a Microcontroller, Weather Sensor, Rain Sensor, Ground Movement Sensor, and GSM Shield as well as programs to make it hap-pen. This system was created to provide information to the public directly in land-slide-prone areas. With this early warning system, it is hoped that people who are in landslide-prone loca-tions will know more quickly and can monitor the condition of landslide-prone areas so that they will be more alert to possible dangers that come suddenly, especially fatalities, can be minimized. Through this tool can also be known when the weather is cloudy, raining as well as movement or signs of ground movement, can be monitored and monitored automatically. directly by everyone from mobile phones through "SIPEGERTA" Land Movement System in Wonosalam District, Jombang Regency


Author(s):  
Edward McClarty

Spectra Energy Transmission (SET) owns and operates approximately 6,000 kms of raw and sweet natural gas transmission pipelines in northeastern British Columbia and northwestern Alberta. This geographic area is very susceptible to landslides and unstable land mass due principally to the local geological regime. These slope instabilities present long term operational challenges to pipeline companies. Geotechnical pipeline failures are not uncommon and pipeline operators spend significant portions of their operational budgets on geotechnical issues. SET has developed a geotechnical integrity program to take a proactive approach to these geotechnical issues. Ground movement monitoring is a significant component of this integrity program and provides physical data that becomes the backbone of remedial works. SET currently utilizes traditional slope indicators, surface survey monitoring, differential GPS, LiDar and InSar technologies to obtain this ground movement data. As an element of the geotechnical integrity program, SET utilizes fiber optic sensors to monitor the pipeline’s reaction to ground movement. After the initial installation of these fiber optic sensors, it was apparent that they could be bonded to almost any structural member. Potential to use the fiber optic sensors to extend the life of a traditional slope indicator was discussed with the sensor manufacturer and six joints of slope indicator casing were fitted with fiber optic sensors. These instrumented joints were then installed across known slide surfaces at various existing monitoring locations. Periodic data collection of both the slope indicator and the fiber optic sensors allowed for ground movement correlation up to the shearing of the slope indicator. It is anticipated that with proper installation and further design improvements from the manufacturer that the fiber optic instrumented slope inclinometers will facilitate ground movement monitoring beyond the life of the traditional slope indicator. This paper discusses the results of the initial trial, what was successful, what lessons were learned, and which pipeline scenarios would benefit from this technology and potential methodologies to monitor ground movement and pipeline bending concurrently.


Sign in / Sign up

Export Citation Format

Share Document