Dynamic phenomena prevention management in mines of SUEK-Kuzbass

2021 ◽  
pp. 88-93
Author(s):  
A. V. Shadrin ◽  
V. I. Klishin
Keyword(s):  
1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


2018 ◽  
Vol 11 ◽  
pp. 46-55
Author(s):  
E.V. Ulyanova ◽  
◽  
V.A. Vasilkovskiy ◽  
O.N. Malinnikova ◽  
◽  
...  

2020 ◽  
Author(s):  
Michael Quayle

In this paper I propose a network theory of attitudes where attitude agreements and disagreements forge a multilayer network structure that simultaneously binds people into groups (via attitudes) and attitudes into clusters (via people who share them). This theory proposes that people have a range of possible attitudes (like cards in a hand) but these only become meaningful when expressed (like a card played). Attitudes are expressed with sensitivity to their potential audiences and are socially performative: when we express attitudes, or respond to those expressed by others, we tell people who we are, what groups we might belong to and what to think of us. Agreement and disagreement can be modelled as a bipartite network that provides a psychological basis for perceived ingroup similarity and outgroup difference and, more abstractly, group identity. Opinion-based groups and group-related opinions are therefore co-emergent dynamic phenomena. Dynamic fixing occurs when particular attitudes become associated with specific social identities. The theory provides a framework for understanding identity ecosystems in which social group structure and attitudes are co-constituted. The theory describes how attitude change is also identity change. This has broad relevance across disciplines and applications concerned with social influence and attitude change.


Author(s):  
Giuseppe Starace ◽  
Lorenzo Falcicchia ◽  
Pierpaolo Panico ◽  
Maria Fiorentino ◽  
Gianpiero Colangelo

AbstractIn refrigeration systems, evaporative condensers have two main advantages compared to other condensation heat exchangers: They operate at lower condensation temperature than traditional air-cooled condensers and require a lower quantity of water and pumping power compared to evaporative towers. The heat and mass transfer that occur on tube batteries are difficult to study. The aim of this work is to apply an experimental approach to investigate the performance of an evaporative condenser on a reduced scale by means of a test bench, consisting of a transparent duct with a rectangular test section in which electric heaters, inside elliptical pipes (major axis 32 mm, minor axis 23 mm), simulate the presence of the refrigerant during condensation. By keeping the water conditions fixed and constant, the operating conditions of the air and the inclination of the heat transfer geometry were varied, and this allowed to carry out a sensitivity analysis, depending on some of the main parameters that influence the thermo-fluid dynamic phenomena, as well as a performance comparison. The results showed that the heat transfer increases with the tube surface exposed directly to the air as a result of the increase in their inclination, that has been varied in the range 0–20°. For the investigated conditions, the average increase, resulting by the inclination, is 28%.


2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


Sign in / Sign up

Export Citation Format

Share Document