Numerical analysis of “T” joints with thin walled hollow sections

2017 ◽  
Vol 6 (2) ◽  
pp. 124
Author(s):  
Messias Júnio Lopes Guerra ◽  
Arlene Maria Cunha Sarmanho ◽  
Gabriel Vieira Nunes ◽  
Daniel José Rocha Pereira ◽  
João Batista da Silva Neto
2008 ◽  
Vol 46 (7-9) ◽  
pp. 975-980 ◽  
Author(s):  
Federico Guarracino ◽  
Alastair Walker

Author(s):  
Amirshokh Kh. Abdurakhmonov

Introduction. Today thin-walled structures are widely used in the construction industry. The analysis of their rigidity, strength and stability is a relevant task which is of particular practical interest. The article addresses a method for the numerical analysis of stability of an axially-compressed i-beam rod subjected to the axial force and the bimoment. An axially compressed i-beam rod is the subject of the study. Materials and methods. Femap with NX Nastran were chosen as the analysis toolkit. Axially compressed cantilever steel rods having i-beam profiles and different flexibility values were analyzed under the action of the bimoment. The steel class is C245. Analytical data were applied within the framework of the Euler method and the standard method of analysis pursuant to Construction Regulations 16.13330 to determine the numerical analysis method. Results. The results of numerical calculations are presented in geometrically and physically nonlinear settings. The results of numerical calculations of thin-walled open-section rods, exposed to the axial force and the bimoment, are compared with the results of analytical calculations. Conclusions. Given the results of numerical calculations, obtained in geometrically and physically nonlinear settings, recommendations for the choice of a variable density FEM model are provided. The convergence of results is estimated for different diagrams describing the steel behavior. The bearing capacity of compressed cantilever rods, exposed to the bimoment, is estimated for the studied flexibility values beyond the elastic limit. A simplified diagram, describing the steel behaviour pursuant to Construction regulations 16.13330, governing the design of steel structures, is recommended to ensure the due regard for the elastoplastic behaviour of steel. The numerical analysis method, developed for axially-compressed rods, is to be applied to axially-compressed thin-walled open-section rods. National Research Moscow State University is planning to conduct a series of experiments to test the behaviour of axially-compressed i-beams exposed to the bimoment and the axial force. Cantilever i-beams 10B1 will be used in experimental testing.


2012 ◽  
Vol 229-231 ◽  
pp. 1120-1124
Author(s):  
Sajjad Dehghanpour ◽  
Sobhan Dehghanpour

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact , is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts. Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section, and material under loading. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in thickness, energy absorption would be more.


Sign in / Sign up

Export Citation Format

Share Document