SURVEY OF SHARKA DISEASE (PLUM POX VIRUS) ON STONE FRUIT TREES IN CHILE

1998 ◽  
pp. 393-400 ◽  
Author(s):  
G. Herrera ◽  
P. Sepúlveda ◽  
M. Madariaga
2012 ◽  
Vol 45 (16) ◽  
pp. 1879-1883
Author(s):  
Hasan Hosseinzadeh ◽  
Saeid Nasrollanejad ◽  
Zahra Dordiani ◽  
Vahid Jamshidnezhad

2013 ◽  
Vol 49 (No. 2) ◽  
pp. 65-69 ◽  
Author(s):  
J. Salava ◽  
J. Polák ◽  
I. Oukropec

Sharka disease caused by the infection with the Plum pox virus (PPV) in stone fruit trees is worldwide the most devastating for stone fruit production. Until now, good sources of resistance to PPV within the peach group have not been available. There are no commercial cultivars of peach that are resistant to PPV. Other Prunus species are known to show varying levels of resistance. Interspecific hybrids GF 677 (Prunus amygdalus × P. persica) and Cadaman (P. davidiana × P. persica) were revealed to be resistant to PPV. The resistance to a Dideron isolate of the descendants of Cresthaven × GF 677 and Cresthaven × Cadaman and their progenitors was evaluated after inoculation by chip-budding in a sealed screenhouse. Results demonstrate a certain level of resistance in both progenies of interspecific hybrids and indicate a potential for PPV resistance transfer to commercial peach cultivars but it will be necessary to perform backcrosses with peach cultivars of agricultural interest in order to return pomological and agronomic traits. For the definitive confirmation of resistance/susceptibility it will be necessary to wait until the adult stage of hybrids.


Biljni lekar ◽  
2021 ◽  
Vol 49 (5) ◽  
pp. 602-612
Author(s):  
Teodora Mihaljfi ◽  
Renata Iličić ◽  
Goran Barać ◽  
Zagorka Savić ◽  
Ferenc Bagi

The plum pox virus was discovered in Bulgaria between 1915 and 1918, hence the name "plum pox". Despite strict quarantine measures, as early as 1980s, this virus was widespread in whole Europe, but its presence was also confirmed in South and North America, Africa and Asia. The only continent where the infection with this virus has not been described yet is Australia. The presence of strains PPV-D, PPV-M and PPV-Rec has been confirmed in Serbia. The PPV-M strain spreads very quickly naturally, and it is considered as very dangerous for stone fruit trees. Trees infected with the plum pox virus do not decay, but bear fruit of poorer quality. Poorer quality of fruits reduces their market value, which leads to significant economic damage.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jun Zhou ◽  
Fei Xing ◽  
hongqing wang ◽  
shifang li

Plum pox or Sharka disease, caused by infection with plum pox virus (PPV), results in enormous economic losses to the stone fruit industry. However, the frequency and distribution of PPV remains unclear in China, the world’s largest stone fruit producer. Systemic visual surveys were performed on stone fruit trees in China from 2008 to 2018, and the results suggest that plum pox disease is widely distributed on common apricots (Prunus armeniaca) and Japanese apricots (P. mume), with an average symptoms incidence rate >30% in the latter. In samples collected from Beijing, Nanjing, Shanghai, Wuhan, Wuxi, and Yuncheng, PPV was detected in 77% (85 out of 110) of collected samples by immunochromatographic (IC) strip tests and RT-PCR, and 96% (67 out of 70) of samples showing Sharka symptoms were PPV-positive. Transmission electron microscopy revealed filamentous particles of ~640 × 12.5 nm (n = 19) in size, and pinwheel inclusions in symptomatic plants, but not in the asymptomatic and PPV negative plant. Full-length genomes were determined for four isolates (three from Japanese apricot and one from common apricot), and phylogenetic analyses indicated that all four isolates belong to a clade PPV-D, despite slight differences in genome size. These findings not only highlight the widespread occurrence and distribution of PPV in China, but also provide detailed information about the genomic characteristics and evolutionary position of PPV isolates in China.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 523-523 ◽  
Author(s):  
A. Dal Zotto ◽  
J. M. Ortego ◽  
J. M. Raigón ◽  
S. Caloggero ◽  
M. Rossini ◽  
...  

Sharka disease, caused by Plum pox virus (PPV), is probably the most important disease of stone fruits crops worldwide because of tremendous yield losses from infected trees (1). During November 2004, symptoms resembling sharka disease were observed in a plum and apricot orchard consisting of 5,000 trees in Pocito, San Juan Province, Argentina. Apricot leaves showed chlorotic spots while plum leaves showed chlorotic rings, spots, and irregular edges. Plum fruits were deformed and much smaller than those from symptomless trees. Samples collected from 70 symptomatic trees were tested using double-antibody sandwich enzyme-linked immunosorbent assays with a polyclonal antiserum anti-PPV from BIOREBA (Reinach BL1, Switzerland), and immunosorbent electron microscopy with a polyclonal antiserum from our laboratory made against a recombinant PPV capsid protein (CP). The samples were also tested using double-antibody sandwich indirect enzyme-linked immunosorbent assay using the REAL kit (Durviz, Valencia, Spain) with two different monoclonal antibodies including Mab 5b that recognizes all strains of PPV and Mab 4DG5 that is specific for PPV strain D. Samples were positive with both antibodies in 80% of the cases. Leaf extracts from symptomatic plum samples were also analyzed by immuno-capture reverse-transcription polymerase chain reaction. A 1,209-bp fragment was amplified with specific primers that anneal at the 5′ end of the coat protein coding region and the viral 3′ end poly A tail. The amplified fragment was cloned and the nucleotide sequence was determined for two of the resulting clones (Gen-Bank Accession Nos. DQ299537 and DQ299538). The sequences were 98% identical with the PPV-strain D from the United States (GenBank Accession No. AF360579) and Germany (GenBank Accession No. X81081). The restriction sites for AluI and RsaI, previously described (2) as typical for the PPV-D strain, were present in the expected positions. To our knowledge, this is the first report of PPV-D in Argentina. Reference: (1) M. Németh. Virus, Mycoplasma, and Rickettsia Disease of Fruit Trees. Martinus Nijhoff Publishers, Dordrecht, the Netherlands, 1986. (2) T. Wetzel et al. J. Virol. Methods 33:355, 1991.


2016 ◽  
Vol 47 (4) ◽  
pp. 141-147 ◽  
Author(s):  
L. Winkowska ◽  
L. Grimova ◽  
P. Rysanek

Abstract The phytosanitary status of wild growing stone fruit trees and shrubs was examined in surveys conducted in 2013 and 2014 in the region of Central Bohemia, Czech Republic. A total of 159 leaf samples were collected (42 cherries, 77 bird cherries, 10 cherry plums, 13 blackthorns, 2 round plums, 15 plums) and tested for the presence of Plum pox virus (PPV), Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Apple mosaic virus (ApMV), Apple chlorotic leaf spot virus (ACLSV), Cherry virus A (CVA), Cherry necrotic rusty mottle virus (CNRMV), Cherry green ring mottle virus (CGRMV), and Cherry leafroll virus (CLRV) using reverse transcription-polymerase chain reaction (RT-PCR). Totally 28.3% of the investigated trees and shrubs were infected by at least one monitored virus. Mixed infection occurred in 5 out of 159 trees (3.1%). PPV was the most widespread virus (13.2% of samples), followed by PDV (11.3%). Contrary to these two most relevant viral pathogens, the incidence of CLRV and CVA was negligible in individually growing trees of the genus Prunus and ApMV, ACLSV, CGRMV, and CNRMV were not detected at all.


Hilgardia ◽  
1933 ◽  
Vol 8 (3) ◽  
pp. 83-123 ◽  
Author(s):  
Edward E. Wilson

Author(s):  
V. P. Hayova

Abstract A description is provided for Leucostoma cinctum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. DISEASE: Leucostoma cinctum, especially in its conidial state, is a well-known pathogen of stone-fruit trees causing necrosis of twigs, perennial Cytospora-canker. The fungus penetrates mainly through the scars, and may result in dieback of branches or even whole trees. Tree susceptibility to L. cinctum is influenced by lesions (Stanova, 1990). Comparative anatomy and host response of peach cultivars inoculated with L. cinctum was studied by Biggs (1986). Resistance of different cultivars of stone-fruit trees to L cinctum has been investigated by many authors (Cociu et al., 1991; Miles et al., 1989; Pedryc & Rozsnyai, 1991). HOSTS: On dead or dying, attached or fallen twigs of the Rosaceae, mainly Prunoideae (Amygdalus, Armeniaca, Cerasus, Persica, Prunus) and rarely other subfamilies of the Rosaceae, including genera such as Cotoneaster, Crataegus, Malus and Pyrus. GEOGRAPHICAL DISTRIBUTION: Asia: Armenia, Republic of Georgia, Iran, Kazakhstan, Russia, Turkmenistan, Uzbekistan. Australasia: Australia. Europe: Czech Republic, France, Germany, Hungary, Italy, Moldova, Rumania, Russia, Slovakia, Spain, Switzerland, Sweden, Turkey, UK, Ukraine, former Yugoslavia. North America: Canada, USA (Idaho, Michigan, New-Jersey, Oregon). TRANSMISSION: Both conidia and ascospores are air-borne, especially under humid conditions. Orange or reddish droplets or tendrils of conidia extruded from conidiomata can be often seen after rain. It is also known that arthropods can carry propagules in stone-fruit orchards (Helton et al., 1988).


Plant Disease ◽  
2020 ◽  
Author(s):  
Rachid Tahzima ◽  
Radouane Qessaoui ◽  
Yoika Foucart ◽  
Sebastian Massart ◽  
Kris De Jonghe

Plum (Prunus domestica L., Rosaceae) trees, like many stone fruit trees, are known to be infected by numerous plant viruses, predominantly as consequence of their clonal mode of propagation and perennial cultivation (Jelkmann and Eastwell, 2011). Apricot vein clearing-associated virus (AVCaV) is a member of the genus Prunevirus in the family Betaflexiviridae. AVCaV was first reported in Italy infecting apricot (P. armeniaca L.) associated with foliar vein clearing symptoms (Elbeaino et al. 2014). It has also been detected in various Prunus species, like plum, Japanese plum (P. salicina L.), sour cherry (P. cerasus L.), and Japanese apricot (P. mume L.), apricot and peach (P. persica L.) sourced from Asian and European countries (Marais et al. 2015), as well as in the ornamental Myrobolan plum (P. cerasifera L.) in Australia (Kinoti et al. 2017). In 2018, during the vegetative season, a survey was carried out in two different apricot and plum orchards in the southern region of Agdez (Agadir, Morocco) where stone fruit trees are grown. Five branches with leaves were sampled from three apricot and three plum trees of unknown cultivars, all asymptomatic. Total RNA was extracted from 100 mg plant tissue (leaves and cambial scrapping) using RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) and separate samples (one per species) were used for library preparation (NEBNext Ultra RNA library kit; New England BioLabs, MA, USA), and sequencing (Illumina NextSeq v2, totRNA sequencing) at Admera Health (New Jersey, USA). All generated reads (6,756,881) from the plum sample were quality filtered and submitted to the VirusDetect pipeline (Zheng et al., 2017). The plum cDNA library, a total of 20 viral contigs (68-1928 bp) mapped to several AVCaV accessions in GenBank. A reference mapping (CLC Genomics Workbench 12, Qiagen, Denmark) was conducted against all four available AVCaV full genomes (KM507062-63, KY132099 and HG008921), revealing 100% coverage of the full sequence (8358 nt) with 97-98 % nucleotide (nt) identities (BLASTn). Analysis of the derived sequences allowed to identify the location of the four predicted ORFs i.e. (ORF1: 6066 nt/2,021 aa), (ORF2: 1383 nt/460 aa), (ORF3: 666 nt/221 aa) and (ORF4: 420 nt/139 aa), previously described for the AVCaV genome (Elbeaino et al. 2014). The amino acid sequences of the encoded proteins of AVCaV isolate from Morocco also shared 97-98% identities with the corresponding sequences of complete genome AVCaV isolates in GenBank. To confirm the detection of AVCaV in the three plum samples, specific RT-PCR primers (VC37657s: 5’-CCATAGCCACCCTTTTTCAA-3’ / VC28239a: 5’-GTCGTCAAGGGTCCAGTGAT-3’) (Elbeaino et al. 2014) were used and the expected 330 bp fragment from the replicase gene was amplified in all three samples and subsequently sequenced (MT980794-96). Sanger sequences were 100% identical to corresponding HTS derived sequence. This is the first report of AVCaV infecting plum in Africa. The incidence of AVCaV in Moroccan Prunus species is unknown. Plum trees from the surveyed orchards were also confirmed to be co-infected with little cherry virus 1 (LChV-1) using HTS. Further investigation is required to determine the impact of AVCaV on these asymptomatic plum trees and other stone fruits species.


Sign in / Sign up

Export Citation Format

Share Document