scholarly journals Evaluation of the Prunus interspecific progenies for resistance to Plum pox virus

2013 ◽  
Vol 49 (No. 2) ◽  
pp. 65-69 ◽  
Author(s):  
J. Salava ◽  
J. Polák ◽  
I. Oukropec

Sharka disease caused by the infection with the Plum pox virus (PPV) in stone fruit trees is worldwide the most devastating for stone fruit production. Until now, good sources of resistance to PPV within the peach group have not been available. There are no commercial cultivars of peach that are resistant to PPV. Other Prunus species are known to show varying levels of resistance. Interspecific hybrids GF 677 (Prunus amygdalus × P. persica) and Cadaman (P. davidiana × P. persica) were revealed to be resistant to PPV. The resistance to a Dideron isolate of the descendants of Cresthaven × GF 677 and Cresthaven × Cadaman and their progenitors was evaluated after inoculation by chip-budding in a sealed screenhouse. Results demonstrate a certain level of resistance in both progenies of interspecific hybrids and indicate a potential for PPV resistance transfer to commercial peach cultivars but it will be necessary to perform backcrosses with peach cultivars of agricultural interest in order to return pomological and agronomic traits. For the definitive confirmation of resistance/susceptibility it will be necessary to wait until the adult stage of hybrids.

Plant Disease ◽  
2020 ◽  
Author(s):  
Rachid Tahzima ◽  
Radouane Qessaoui ◽  
Yoika Foucart ◽  
Sebastian Massart ◽  
Kris De Jonghe

Plum (Prunus domestica L., Rosaceae) trees, like many stone fruit trees, are known to be infected by numerous plant viruses, predominantly as consequence of their clonal mode of propagation and perennial cultivation (Jelkmann and Eastwell, 2011). Apricot vein clearing-associated virus (AVCaV) is a member of the genus Prunevirus in the family Betaflexiviridae. AVCaV was first reported in Italy infecting apricot (P. armeniaca L.) associated with foliar vein clearing symptoms (Elbeaino et al. 2014). It has also been detected in various Prunus species, like plum, Japanese plum (P. salicina L.), sour cherry (P. cerasus L.), and Japanese apricot (P. mume L.), apricot and peach (P. persica L.) sourced from Asian and European countries (Marais et al. 2015), as well as in the ornamental Myrobolan plum (P. cerasifera L.) in Australia (Kinoti et al. 2017). In 2018, during the vegetative season, a survey was carried out in two different apricot and plum orchards in the southern region of Agdez (Agadir, Morocco) where stone fruit trees are grown. Five branches with leaves were sampled from three apricot and three plum trees of unknown cultivars, all asymptomatic. Total RNA was extracted from 100 mg plant tissue (leaves and cambial scrapping) using RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) and separate samples (one per species) were used for library preparation (NEBNext Ultra RNA library kit; New England BioLabs, MA, USA), and sequencing (Illumina NextSeq v2, totRNA sequencing) at Admera Health (New Jersey, USA). All generated reads (6,756,881) from the plum sample were quality filtered and submitted to the VirusDetect pipeline (Zheng et al., 2017). The plum cDNA library, a total of 20 viral contigs (68-1928 bp) mapped to several AVCaV accessions in GenBank. A reference mapping (CLC Genomics Workbench 12, Qiagen, Denmark) was conducted against all four available AVCaV full genomes (KM507062-63, KY132099 and HG008921), revealing 100% coverage of the full sequence (8358 nt) with 97-98 % nucleotide (nt) identities (BLASTn). Analysis of the derived sequences allowed to identify the location of the four predicted ORFs i.e. (ORF1: 6066 nt/2,021 aa), (ORF2: 1383 nt/460 aa), (ORF3: 666 nt/221 aa) and (ORF4: 420 nt/139 aa), previously described for the AVCaV genome (Elbeaino et al. 2014). The amino acid sequences of the encoded proteins of AVCaV isolate from Morocco also shared 97-98% identities with the corresponding sequences of complete genome AVCaV isolates in GenBank. To confirm the detection of AVCaV in the three plum samples, specific RT-PCR primers (VC37657s: 5’-CCATAGCCACCCTTTTTCAA-3’ / VC28239a: 5’-GTCGTCAAGGGTCCAGTGAT-3’) (Elbeaino et al. 2014) were used and the expected 330 bp fragment from the replicase gene was amplified in all three samples and subsequently sequenced (MT980794-96). Sanger sequences were 100% identical to corresponding HTS derived sequence. This is the first report of AVCaV infecting plum in Africa. The incidence of AVCaV in Moroccan Prunus species is unknown. Plum trees from the surveyed orchards were also confirmed to be co-infected with little cherry virus 1 (LChV-1) using HTS. Further investigation is required to determine the impact of AVCaV on these asymptomatic plum trees and other stone fruits species.


2010 ◽  
pp. 34-41
Author(s):  
Gábor Tarcali ◽  
Emese Kiss ◽  
György J. Kövics ◽  
Sándor Süle ◽  
László Irinyi ◽  
...  

Plant diseases caused by phytoplasmas have increasing importance in all over the world for fruit growers. Lately, phytoplasma diseases occur on many fruit varieties and responsible for serious losses both in quality and quantity of fruit production. In the long-run these diseases cause destruction of fruit trees. The apricot phytoplasma disease (Ca. Phytoplasma prunorum) was first reported in Europe in 1924 from France. In 1992 the disease has also been identified in Hungary. On the base of growers' signals serious damages of "Candidatus Phytoplasma prunorum" Seemüller and Schneider, 2004 (formerly: European stone fruit yellows phytoplasma) could be observed in different stone fruit plantations in the famous apricot-growing area nearby Gönc town, Northern-Hungary. Field examinations have been begun in 2009 in several stone fruit plantations in Borsod-Abaúj-Zemplén County mainly in Gönc region which is one of the most important apricot growing regions in Hungary, named “Gönc Apricot Growing Area”. Our goals were to diagnose the occurrence of Ca. Phytoplasma prunorum on stone fruits (especially on apricot) in the North-Hungarian growing areas by visual diagnostics and confirm data by laboratory PCR-based examinations. All the 28 collected samples were tested in laboratory trials and at 13 samples from apricot, peach, sour cherry and wild plum were confirmed the presence of phytoplasma (ESFY). On the base of observations it seems evident that the notable losses caused by "Ca. Phytoplasma prunorum" is a new plant health problem to manage for fruit growers, especially apricot producers in Hungary. 


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1402-1409 ◽  
Author(s):  
Providence Moyo ◽  
Ulrike Damm ◽  
Lizel Mostert ◽  
Francois Halleen

Stone fruit trees (Prunus spp.) are economically important fruit trees cultivated in South Africa. These trees are often grown in close proximity to vineyards and are to a large extent affected by the same trunk disease pathogens as grapevines. The aim of the present study was to determine whether stone fruit trees are inhabited by Diatrypaceae species known from grapevines and whether these trees could act as alternative hosts for these fungal species. Isolations were carried out from symptomatic wood of Prunus species (almond, apricot, cherry, nectarine, peach, and plum) in stone fruit growing areas in South Africa. Identification of isolates was based on phylogenetic analyses of the internal transcribed spacer region and β-tubulin gene. Forty-six Diatrypaceae isolates were obtained from a total of 380 wood samples, from which five species were identified. All five species have also been associated with dieback of grapevine. The highest number of isolates was found on apricot followed by plum. No Diatrypaceae species were isolated from peach and nectarine. Eutypa lata was the dominant species isolated (26 isolates), followed by Cryptovalsa ampelina (7), Eutypa cremea (5), Eutypella citricola (5), and Eutypella microtheca (3). First reports from Prunus spp. are E. cremea, E. citricola, and E. microtheca. Pathogenicity tests conducted on apricot and plum revealed that all these species are pathogenic to these hosts, causing red-brown necrotic lesions like those typical of Eutypa dieback on apricot.


1998 ◽  
pp. 393-400 ◽  
Author(s):  
G. Herrera ◽  
P. Sepúlveda ◽  
M. Madariaga

2012 ◽  
Vol 45 (16) ◽  
pp. 1879-1883
Author(s):  
Hasan Hosseinzadeh ◽  
Saeid Nasrollanejad ◽  
Zahra Dordiani ◽  
Vahid Jamshidnezhad

2000 ◽  
Vol 10 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Stephen M. Southwick ◽  
Kitren Glozer

Many commercially grown stone fruit including apricots (Prunus armeniaca L.), peaches and nectarines [P. persica (L.) Batsch], plums (P. salicina Lindl., P. domestica L.), prunes (P. domestica L.), and pluots (P. salicina × P. armeniaca) have a tendency to produce high numbers of flowers. These flowers often set and produce more fruit than trees can adequately size to meet market standards. When excessive fruit set occurs, removal of fruit by hand thinning is necessary in most Prunus L. species to ensure that remaining fruit attain marketable size and reduce biennial bearing. Over the years there have been numerous attempts to find chemical or physical techniques that would help to reduce the costs associated with and improve efficiencies of hand thinning, however, alternate strategies to hand thinning have not been widely adopted for stone fruit production. In the past 10 years, several chemical treatments have shown promise for reducing hand thinning needs in stone fruit. Management of flowering by chemically reducing the number of flowers has been particularly promising on stone fruit in the Sacramento and San Joaquin Valleys of California. Gibberellins (GAs) applied during May through July, have reduced flowering in the following season in many stone fruit cultivars without affecting percentage of flowers producing fruit. As a result, fruit numbers are reduced, the need for hand thinning is reduced and in some cases eliminated, and better quality fruit are produced. There are risks associated with reducing flower number before climatic conditions during bloom or final fruit set are known. However, given the changes in labor costs and market demands, the benefits may outweigh the risks. This paper reviews relevant literature on thinning of stone fruit by gibberellins, and summarizes research reports of fruit thinning with GAs conducted between 1987 and the present in California. The term thin or chemically thin with regard to the action of GA on floral buds is used in this paper, consistent with the literature, although the authors recognize that the action of GA is primarily to inhibit the initiation of floral apices, rather than reduce the number of preformed flowers. At relatively high concentrations, GA may also kill floral buds. Chemical names used: gibberellic acid, potassium gibberellate.


2011 ◽  
Vol 51 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Mirosława Cieślińska

Less Common Phytoplasmas Infecting Stone Fruit TreesPrunusspecies plants can be infected by eight ‘CandidatusPhytoplasma’ (‘Ca.P.’) species classified to eight distinctive taxonomic groups: ‘Ca.P. prunorum’ (16SrX-B), ‘Ca.P. mali’ (16SrX-A), ‘Ca.P. pyri’ (16SrX-C), ‘Ca.P. asteris’ (16SrI), ‘Ca.P. aurantifolia’ (16SrII), ‘Ca. P. ziziphi’ (16SrV), ‘Ca.P. fraxini’ (16SrVII), ‘Ca.P. phoenicium’ (16SrIX) and two potentially new species: ‘Ca.P. pruni’ (16SrIII) and ‘Ca.P. solani’ (16SrXII). These agents occur incidentally in orchards and their impact on stone fruit production is lower than ‘CandidatusPhytoplasma prunorum’. Hosts, geographic distribution, symptoms and insect vectors of these ‘Ca.P.’ species, methods of their identification, and control management are reviewed.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 281-284 ◽  
Author(s):  
S. Richter

1548 stone fruit trees (1435 trees of P. armeniaca, 113 trees of P. persica) were examined by PCR for ESFY to get information on spread and susceptibility of cultivars and rootstocks used in Austrian stone fruit production. Cultivar susceptibility seems to be less important for tolerance to ESFY than rootstock resistance. Apricot cultivars on rootstocks of myrobalan, commonly used in Austria, are more infected than cultivars on plum rootstocks. Data on peach and apricot rootstocks are not representative as both are not commonly used in Austrian apricot production. In addition, the presence of peroxidase activity in shoot sieve tubes of infected apricot trees (Hungarian Best) reveals that peroxidase is involved in defense mechanisms in plant-pathogen interaction.


2012 ◽  
Vol 39 (No. 3) ◽  
pp. 144-148 ◽  
Author(s):  
L. Grimová ◽  
P. Ryšánek

Apricot latent virus (ApLV) is a definitive species of the Foveavirus genus, the Betaflexiviridae family. Although the virus is not highly prevalent, it was identified in several European and Mediterranean countries thus far. Biological experiments demonstrated that, in addition to the only known natural host, Prunus armeniaca, ApLV can be experimentally graft-transmitted to several Prunus species. Therefore, the eradication of the viral pathogen largely depends on the use of virus-free propagating materials and rootstocks, which should be seriously considered when designing and implementing stone fruit certification schemes. Although ApLV is not present on the list of viruses and other pathogens that require testing in the EPPO certification schemes for the production of healthy stone fruit trees for planting, Peach asteroid spot disease (PAS) causing agent whose occurrence was often justly correlated with ApLV, is included on the list. This review summarises the current available knowledge of ApLV on the biological, morphological, physicochemical and molecular levels and includes the contemporary management approaches.


Biljni lekar ◽  
2021 ◽  
Vol 49 (5) ◽  
pp. 602-612
Author(s):  
Teodora Mihaljfi ◽  
Renata Iličić ◽  
Goran Barać ◽  
Zagorka Savić ◽  
Ferenc Bagi

The plum pox virus was discovered in Bulgaria between 1915 and 1918, hence the name "plum pox". Despite strict quarantine measures, as early as 1980s, this virus was widespread in whole Europe, but its presence was also confirmed in South and North America, Africa and Asia. The only continent where the infection with this virus has not been described yet is Australia. The presence of strains PPV-D, PPV-M and PPV-Rec has been confirmed in Serbia. The PPV-M strain spreads very quickly naturally, and it is considered as very dangerous for stone fruit trees. Trees infected with the plum pox virus do not decay, but bear fruit of poorer quality. Poorer quality of fruits reduces their market value, which leads to significant economic damage.


Sign in / Sign up

Export Citation Format

Share Document