prunus amygdalus
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 13 ◽  
Author(s):  
Maryam Abdolahi-Majd ◽  
Gholamhossein Hassanshahi ◽  
Mahboubeh Vatanparast ◽  
Mojgan Noroozi Karimabad

Background: Anti-cancer effects of almond nuts or oil have been approved, but there are a few pieces of research that have evaluated, in detail, almond and other seeds' effects on cancer. Therefore, in the present project, the aim was to explore the regulatory effect of the bitter almond extract (Prunus amygdalus Batsch) on the apoptotic and anti-cancer potency of MCF-7 cells. Objectives: In the current experimental research, the Almond effect on MCF7 cells was evaluated by investigating the expression and the balance between Bcl-2, Bax genes to unmark the potential molecular mechanism. Methods: For 24 and 48h, the MCF7 cells were treated with the bitter almond extract (187.5-3000 µg/mL). MTT assay was used to assess the viability, and Real-time-PCR was applied to determine the expression of Bax and Bcl-2, facing β-actin. Results: Our results revealed a significant difference between different extract concentrations on the viability of MCF7 cell lines in 24 and 48 h; cell viability decreased time-dependently (P < 0.05). After 24 and 48h of extract facing MCF7 cells, the evaluated IC50 value was 3000 and 1500 µg/mL, respectively. Based on Real Time-PCR analysis, after 24 and 48 h, the mRNA levels of BCL-2 decreased by the extract, whereas BAX was in the MCF-7 cell line. Conclusion: From the results, it can be concluded that bitter almond extract has anti-cancer properties that may influence the apoptotic pathways by regulating relative gene expression.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 159
Author(s):  
Álvaro Montesinos ◽  
Grant Thorp ◽  
Jérôme Grimplet ◽  
María José Rubio-Cabetas

The cropping potential of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) cultivars is determined by their adaptation to edaphoclimatic and environmental conditions. The effects of scion–rootstock interactions on vigor have a decisive impact on this cropping success. Intensively planted orchards with smaller less vigorous trees present several potential benefits for increasing orchard profitability. While several studies have examined rootstock effects on tree vigor, it is less clear how rootstocks influence more specific aspects of tree architecture. The objective of this current study was to identify which architectural traits of commercially important scion cultivars are influenced by rootstock and which of these traits can be useful as descriptors of rootstock performance in breeding evaluations. To do this, 6 almond cultivars of commercial significance were grafted onto 5 hybrid rootstocks, resulting in 30 combinations that were measured after their second year of growth. We observed that rootstock choice mainly influenced branch production, but the effects were not consistent across the different scion–rootstock combinations evaluated. This lack of consistency in response highlights the importance of the unique interaction between each rootstock and its respective scion genotype.


2021 ◽  
pp. 11-24
Author(s):  
Amina Alaya ◽  
Anna Beáta Máthé ◽  
Ede Frecska ◽  
Endre Máthé

With the increasing attention to the health promoting activities of the bioactive compounds from some plants, many researchers are focusing on the biological potential and mechanisms of certain cultivated plant species. In this review, we survey the olive and almond based extracts specific phytoconstituents and their associated health promoting effects that have been evaluated in experimental and clinical studies.  


Author(s):  
Sina Kordzadeh ◽  
Hassan Sarikhani

The rootstock GF677 is an interspecific hybrid with an important economic and horticultural value. In this research, the effect of indole butyric acid (IBA) in combination with putrescine (Put) and hydrogen peroxide (H2O2) on rooting of GF677 semi-hardwood stem cuttings in three cutting seasons (July, March and October) was investigated. Treatments as IBA (0, 1000, 2000 and 3000 mg L-1), Put (0, 800, 1600 and 3200 mg L-1) and H2O2 (1.5, 3 and 6% w/v) were included. The results showed that in July cuttings, the highest levels of callogenesis were observed in IBA treated cuttings in both concentrations of 1000 and 2000 mg L-1. The rooting was very low in July cuttings, while the highest percentage of rooting (14%) was observed in the combination of 2000 mg L-1 IBA+ 3% H2O2. In March, the cuttings treated by 1000 mg L-1 IBA+800 mg L-1 Put and 1000 mg L-1 IBA+1600 mg L-1 Put revealed the highest percentages of callus formation 83.31 and 83.33%, respectively. In these cuttings, the highest percentage of rooting (63.88%) was gained at 2000 mg L-1 IBA+3200 mg L-1 Put. The application of 1000 mg L-1 IBA+800 mg L-1 Put increased root fresh weight. In cuttings prepared in October, only 800 mg L-1 Put caused callus formation in more than 55% of the cuttings. The rooting of cuttings at this time was as low as the July cuttings, whereas the highest rooting percentage was observed in cuttings treated with IBA at a concentration of 1000 mg L-1. Overall, the experiment showed that the season of the cutting and the treatments with IBA+Put or H2O2 could improve rooting properties of the rootstock GF677.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Refka Dhouibi ◽  
◽  
Hanen Oueslati ◽  
Senda Bahri ◽  
Khaled Jabou ◽  
...  

Almonds (Prunus amygdalus) are a rich source of many essential nutrients. However, there is a lack of enough information on almond varieties' biochemical composition, especially at the germination stage. Therefore, this study was conducted to determine the chemical components of the germinating Tunisian almonds. The study included determining the content of oils, proteins, fatty acids, and triglycerides during germination. Results indicated that the oleaginous seeds are rich in oil (55 to 65% of the dry mass) and crude protein (21.825 mg/mL). The dominant polyunsaturated fatty acids are oleic and linoleic acids which represent 64.53% and 24.38%, respectively, while palmitic acid is the most dominant saturated fatty acid with 7.65% of the total fatty acids. Also, the primary molecular types of triglycerides detected by L.C. analysis are triolein (32.3%) and dioleolinolein (24.0%), followed by palmitodiolein (12.5%) and oleodilinolein (12.6%.). The physico-chemical properties study revealed that almond oil remains stable, thus preserving its quality and nutritional value, even during transition from dormancy to germination. On the other hand, we also detected the presence of a lipolytic activity which is maximum on the 3rd day of germination (4.66 mUI). Our results indicate that almond oil plays an important role in human nutrition due to the presence of unsaturated fatty acids, and it is more stable than other oils.


Sign in / Sign up

Export Citation Format

Share Document