CYTOPLASMIC MALE STERILITY IN INTERSPECIFIC HYBRIDS BETWEEN AMERICAN AND ASIAN CASTANEA SPECIES IS CORRELATED WITH THE AMERICAN D CHLOROPLAST HAPLOTYPE

2014 ◽  
pp. 215-222 ◽  
Author(s):  
P.H. Sisco ◽  
T.C. Neel ◽  
F.V. Hebard ◽  
J.H. Craddock ◽  
J. Shaw
Author(s):  
K.R. KANUKOVA ◽  
◽  
Z.I. BOGOTOVA ◽  
I.Kh. GAZAEV ◽  
S.P. APPAEV ◽  
...  

Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 833-841 ◽  
Author(s):  
Douglas R Taylor ◽  
Matthew S Olson ◽  
David E McCauley

Abstract Gynodioecy, the coexistence of functionally female and hermaphroditic morphs within plant populations, often has a complicated genetic basis involving several cytoplasmic male-sterility factors and nuclear restorers. This complexity has made it difficult to study the genetics and evolution of gynodioecy in natural populations. We use a quantitative genetic analysis of crosses within and among populations of Silene vulgaris to partition genetic variance for sex expression into nuclear and cytoplasmic components. We also use mitochondrial markers to determine whether cytoplasmic effects on sex expression can be traced to mitochondrial variance. Cytoplasmic variation and epistatic interactions between nuclear and cytoplasmic loci accounted for a significant portion of the variation in sex expression among the crosses. Source population also accounted for a significant portion of the sex ratio variation. Crosses among populations greatly enhanced the dam (cytoplasmic) effect, indicating that most among-population variance was at cytoplasmic loci. This is supported by the large among-population variance in the frequency of mitochondrial haplotypes, which also accounted for a significant portion of the sex ratio variance in our data. We discuss the similarities between the population structure we observed at loci that influence sex expression and previous work on putatively neutral loci, as well as the implications this has for what mechanisms may create and maintain population structure at loci that are influenced by natural selection.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


2009 ◽  
Vol 25 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Zhi Wei Wang ◽  
Li Jun Zhang ◽  
Jie Chen ◽  
Chang Ping Xiang ◽  
Shi Yong Mei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document