IN VITRO CONSERVATION OF PRUNUS CERASIFERA EHRH. BY ENCAPSULATION DEHYDRATION AND 'COLD STORAGE' TECHNIQUES

2015 ◽  
pp. 587-594
Author(s):  
DJ. Ruzić ◽  
T. Vujović ◽  
R. Cerović
Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


2018 ◽  
Vol 30 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Ramadan A. Hassanein ◽  
Ehab A. Salem ◽  
Ahmed A. Zahran

AbstractThis study was performed to explore the efficacy of combining more than one postharvest treatment in maintaining some quality attributes and reducing fungal pathogenicity in cold-stored guava fruits. The investigated postharvest treatments included the control, CaCl2(4%), lemongrass oil (2 dm3kg−1), gamma (γ) irradiation (0.2, 0.4 and 0.6 kGy), 0.4 kGy γ irradiation + CaCl2(4%), and 0.4 kGy γ irradiation + lemongrass oil (2 dm3kg−1). The studied physiochemical attributes included weight loss, decay percentage, fruit firmness, total soluble solids (TSS), titratable acidity (TA), and vitamin C content. Different fungal species were also isolated from decayed fruits and were identified asAlternaria alternata,Alternaria solani,Aspergillus niger,Botrytis cinerea,Fusarium solaniandRhizopus stolonifer. The severity of infection for the different fungi was determined, and anin vitroantifungal assay was conducted for lemongrass oil. All the investigated treatments generally reduced decay and water loss percentages, and controlled TSS, TA and vitamin C decrements that occurred during cold storage. On the other hand, higher irradiation doses generally increased fruit softness, and the 0.4 kGy γ dose did not contribute to the overall fruit quality when coupled with CaCl2and lemongrass oil, compared to CaCl2and lemongrass oil treatments alone.


2013 ◽  
Vol 41 (2) ◽  
pp. 638 ◽  
Author(s):  
Aylin OZUDOGRU ◽  
Diogo Pedrosa Corrêa Da SILVA ◽  
Ergun KAYA ◽  
Giuliano DRADI ◽  
Renato PAIVA ◽  
...  

The study focused on an economically-important ornamental outdoor shrub, Nandina domestica, with the aims to (i) optimize an effective in vitro conservation method, and (ii) develop a cryopreservation protocol for shoot tips by the PVS2 vitrification and droplet-vitrification techniques. For in vitro conservation of shoot cultures, the tested parameters were sucrose content in the storage medium (30, 45, 60 g/L) and storage temperature (4 °C or 8 °C). Cryopreservation was performed by applying the PVS2 vitrification solution, in 2-ml cryovials or in drops over aluminum foil strips, for 15, 30, 60 or 90 min at 0 °C, followed by the direct immersion in liquid nitrogen of shoot tips. Results show that N. domestica shoots can be conserved successfully for 6 months at both the temperatures tested, especially when 60 g/L sucrose is used in the storage medium. However, conservation at 4 °C showed to be more appropriate, as hyperhydricity was observed in post-conservation of shoots coming from storage at 8 °C. As for cryopreservation, a daily gradual increase of sucrose concentration (from 0.25 to 1.0 M) produced better protection to the samples that were stored in liquid nitrogen. Indeed, with this sucrose treatment method, a 30-min PVS2 incubation time was enough to produce, 60 days after thawing, the best recovery (47% and 50%) of shoot tips, cryopreserved with PVS2 vitrification and droplet-vitrification, respectively.


2014 ◽  
pp. 309-317 ◽  
Author(s):  
Jinmei Zhang ◽  
Xia Xin ◽  
Guangkun Yin ◽  
Xinxiong Lu ◽  
Xiaoling Chen

2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Robin M. Brusen ◽  
Christopher D. Rolfes ◽  
Stephen A. Howard ◽  
Michael G. Bateman ◽  
Paul A. Iaizzo

The current methodologies of clinical heart transplantation limit the ischemic window to 4–6 h. Periods longer than this can induce dysfunction in the organ and can lead to increased patient morbidity and mortality. An alternative to the current methods of static cold storage (CS) is continuous hypothermic perfusion (CHP), where a hypothermic oxygenated crystalloid solution is mechanically perfused through the coronary arteries. This has been shown to preserve the function for up to 72 h, but the techniques have yet to be optimized. We have developed an apparatus and methodology for performing CHP on large mammalian hearts, followed by reanimation in our in vitro Langendorff apparatus (The Visible HeartTM). We are also investigating the utility of the cardioprotective agents docosahexaenoic acid and [D-Ala2, D-Leu5] enkephalin, both of which have shown cardioprotective effects in our laboratory, and we believe that their addition to the preservation solution can further extend the transplant window. A series of pilot studies has been performed to date, with modestly successful results. Hearts preserved with CHP seem to show better functionality than CS hearts but far worse functionality than hearts reanimated immediately after explant. We hope to use this system to optimize CHP methodology and eventually develop a system for prolonging the window for heart transplantation.


2016 ◽  
Vol 62 (2) ◽  
pp. 52-59 ◽  
Author(s):  
Samir A. Mahgoub ◽  
Ali O. Osman ◽  
Mahmoud Z. Sitohy

2016 ◽  
Vol 41 (1) ◽  
pp. 67-74
Author(s):  
MKR Bhuiyan ◽  
MJ Hossain ◽  
MM Haque

In vitro conservation of germplasm plays a vital role in maintenance breeding and also has many advantages over the conventional system. The experimental results for conservation of Colocasia sp. also proved this. In relation to explants and osmoticum, meristem and axillary bud could be conserved for 24 months while meristem-base died after 6 months. Mannitol as osmoticum @ 4% performed nicely to conserve Colocasia upto 24 months. Only meristem and axillary bud could be conserved for 24 months with the use of 4 % mannitol. But other level of mannitol remained culture alive for varying periods (6 to 12 months). After 24 months, the plant height was 6.5 cm for the meristem and 6.4 for axillary bud.Bangladesh J. Agril. Res. 41(1): 67-74, March 2016


Sign in / Sign up

Export Citation Format

Share Document