scholarly journals Nitrogen and potassium supply and the morphogenic and productive characteristics of marandu palisadegrass

2010 ◽  
Vol 39 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Marcio Mahmoud Megda ◽  
Francisco Antonio Monteiro

The objective of this work was to study morphogenic characteristics, and dry matter production of roots and shoots of marandu palisadegrass (Brachiaria brizantha cv. Marandu) submitted to combinations of nitrogen and potassium, in a nutritive solution, employing silica as substrate. The experiment was carried out in a greenhouse during the summer. It was used a 5² fractionated factorial scheme with 13 combinations of nitrogen and potassium, which were distributed in a randomized block design, with four replications. The nitrogen × potassium interaction was significant for the number of tillers and leaves, for leaf area, for shoots and root section dry mass, for total length and surface and specific length and surface in the roots. Production of aerial part dry mass positively correlated with the number of tillers and leaves and grass leaf area. Nitrogen rates modulated the root system development, and the root specific length and surface decreased when high rates of nitrogen and potassium were supllied. Nitrogen and potassium influence Marandu palisadegrass morphogenic characteristics, which are determinant for grass dry matter production.

2018 ◽  
Vol 85 (0) ◽  
Author(s):  
Suzete Fernandes Lima ◽  
Leandro Spíndola Pereira ◽  
Gustavo Dorneles Sousa ◽  
Simonny Araújo Vasconcelo ◽  
Adriano Jakelaitis ◽  
...  

ABSTRACT: The use of herbicide underdoses allows minimizing the competition of grasses on annual crops, enabling simultaneous cultivation. In this context, the objective of this study was to investigate glyphosate underdoses on the suppression of the initial growth of three Panicum maximum cultivars aiming at the integrated cultivation, in addition to the effects of forage species on the incidence and development of weeds. Three field experiments were conducted. The experimental design was a randomized block design with four replications and eight treatments consisting of increasing glyphosate doses (0, 54, 108, 270, 378, 540, 756, and 1,080 g a.e. ha−1). An atrazine dose of 1,200 g a.i. ha−1 was added to each treatment. Plant phytotoxicity assessments were performed at 7, 14, 21, and 28 days after application. At 80 and 125 days after sowing, the assessments of total dry matter production, leaf dry matter, stem dry matter, and leaf to stem ratio were carried out, in addition to density and dry matter production of weed community. Glyphosate underdoses below 215, 65, and 90 g a.e. ha-1 have a potential to be investigated aiming at the management of P. maximum cv. Atlas, P. maximum cv. Mombasa, and P. maximum cv. Tanzania under intercropping. The three forage species are effective in suppressing weeds.


2010 ◽  
Vol 34 (2) ◽  
pp. 435-442 ◽  
Author(s):  
Alberto C. de Campos Bernardi ◽  
Marisa Bezerra de Mello Monte ◽  
Paulo Renato Perdigão Paiva ◽  
Carlos Guarino Werneck ◽  
Patrick Gesualdi Haim ◽  
...  

Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z) only, zeolite + KNO3 (ZNK), zeolite + K2HPO4 (ZPK) and zeolite + H3PO4 + apatite (ZP), and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.


2019 ◽  
pp. 1375-1382
Author(s):  
Tulio Martinez Santos ◽  
Edna Maria Bonfim Silva ◽  
Tonny José Araújo da Silva ◽  
Ana Paula Alves Barreto Damasceno

Soil compaction is a big limitation to food production in agriculture. Wood ash is an agro-industrial residue generated by the burning of biomass in boilers for energy production. It can be used as a corrective agent and fertilizer of the soil. In this context, the objective of this study was to evaluate the root system of safflower cultivated under bulk density levels and wood ash doses in dystrophic Oxisol. The experiment was conducted in a greenhouse with a randomized block design under a 5x5 factorial scheme composed of 5 wood ash doses (0, 8, 16, 24, 32 g dm-3) and 5 bulk density levels (1.0, 1.2, 1.4, 1.6, 1.8 Mg m-3) with 4 replicates. The soil was collected from 0-0.20 m depth layer. Later it was incubated with the respective wood ash doses. Each experimental unit consisted of a pot made of three PVC (polyvinyl chloride) rings, in which the layers of 0.1-0.2 m were compacted. At 75 days after emergence, the plants were cut, their roots washed and the volume and dry mass checked. The results were submitted to analysis of variance and subsequent regression test, both at 5% probability. Soil densities negatively influenced the root system development and culture of safflower. Application of wood ash doses of 20 to 24 g dm-3 significantly improved root development of plant.


2020 ◽  
Vol 38 (2) ◽  
pp. 280-286
Author(s):  
Anna Bárbara De Souza Cruz ◽  
José de Anchieta Alves de Albuquerque ◽  
Paulo Roberto Ribeiro Rocha ◽  
Leandro Torres de Souza ◽  
Diego Lima de Souza Cruz ◽  
...  

As a control measure against weeds, the use of herbicides is an effective and inexpensive alternative. However, there are no products recommended for the cultivation of cowpea in Brazil, making it necessary to search for alternative solutions. The objective of this study was to evaluate the effect of herbicides applied in the pre- and post-emergence on cowpea nodulation and production under conditions of the Amazonian savannah. Two experiments were carried out in a randomized block design with four replicates, using the cowpea cultivar BRS Aracê subjected to the pre-emergence herbicides: Metribuzin, Sulfentrazone, Smetolachlor, Pendimethalin, Oxadiazon, Alachlor, Metribuzin + Pendimethalin, Metribuzin + Alachlor and Quizalofop-p-ethyl, Bentazon, Fomesafen, Imazethapyr, Imazamox + Bentazon, Quizalofop-p-ethyl + Imazethapyr, Quizalofop-p-ethyl + Imazamox and Quizalofop-p-ethyl + Bentazon, and post-emergence herbicides: Quizalofop-p-ethyl, Bentazon, Fomesafen, Imazethapyr, Imazamox + Bentazon, Quizalofop-p-ethyl + Imazethapyr, Quizalofop-p-ethyl + Imazamox, and Quizalofop-p-ethyl + Bentazon. The number of nodules in each plant, the dry matter of nodules, dry matter of roots and the grain yield were evaluated. According to the results obtained, the management of weeds in pre- or post-emergence according to the herbicide used affects the nodulation and productivity of cowpea under the conditions of the Amazonian savannah. The herbicides Metribuzin in preemergence,and Fomesafen and the mixture of Quizalofop-pethyl + Imazethapyr in post-emergence are not recommended for weed control in cowpea. The application of Oxadiazon, Alachlor, and Pendimethalin in pre-emergence can be considered interesting because they do not inhibit the development of the root system or the nodulation of cowpea which provides agreater grain yield. Regarding weed control strategies at postemergence, the application of the herbicide Imazethapyr and the combination of the herbicides quizalofop-p-ethyl + imazamox, Quizalofop-p-ethyl + Bentazon and Imazamox + Bentazon allow satisfactory levels of grain yield, root system development and nodulation of cowpea.


2014 ◽  
Vol 34 (4) ◽  
pp. 738-745 ◽  
Author(s):  
Veridiana Z. de Mendonça ◽  
Luiz M. M. de Mello ◽  
Francisco C. B. L. Pereira ◽  
José O. da R. Silva ◽  
Élcio H. Yano

Corn cropping for silage, due to the plant material exportation, intercropping with forage provides greater ground cover and straw formation for the Direct Planting System (DPS) continuity. The objective of this study was to evaluate corn production for silage in DPS intercropped with four forages (Urochloa brizantha cv. Marandu, U. ruziziensis cv. Ruziziensis, Panicum maximum cv. Tanzânia and P. maximum cv. Áries). We applied three sowing methods (in row together with corn fertilizer; by no-till sowing simultaneously to corn sowing and at V4 corn stage) and corn without intercropping. The experiment was conducted in autumn/ winter of 2010, in Selvíria - MS, in a randomized block design in factorial arrangement (4 x 3 + 1) and 4 replications. For corn, we evaluated plant height, basal stem diameter, initial and final stand and silage production and for forage dry matter production. Morphological characteristics and corn yield were not affected by intercropping when compared to sole corn crop. Forage dry matter production sown in corn row with fertilizer is a highlight, which in addition to providing greater productivity, harnesses the operation during sowing.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 3335-3350
Author(s):  
Grazielle de Carvalho Reis ◽  
◽  
Wildiney Freire de Oliveira ◽  
Camila Cunha da Silva ◽  
Bruno Pereira da Silva ◽  
...  

This study aimed to evaluate the effects of a biostimulant on the morphogenesis, structure, productivity, and chemical composition of Urochloa brizantha cv. Marandu, managed under two nitrogen fertilization levels. Collections were carried out during the dry (June to September) and the rainy season (September to April). The experimental area was divided into 48 plots of 8 m2 each, using a randomized block design in a 4 × 2 factorial arrangement (0, 1, 2, and 3 L ha−1 of biostimulant × 50 and 150 kg N ha−1 year−1), and subdivided over time into dry and rainy seasons. Treatments were applied in a single dose. An interaction was observed between biostimulant and nitrogen fertilization for the total forage dry matter production and daily forage dry matter production, in which an increase of 30.1 and 25.3% was observed in the total dry matter production and 33.7 and 27.6% in the daily dry matter production when using 1 and 2 L ha−1 of biostimulant, respectively, compared to the non-application of biostimulant and with fertilization of 50 kg N ha−1 year−1. The leaf life-span showed a triple interaction (biostimulant × nitrogen fertilization × season), and a decomposition of the interaction showed that the fertilization of 150 kg N ha−1 year−1 provided a shorter leaf life-span during the dry season, with no difference for the other combinations of factors. No interactions were found for the chemical-bromatological composition, with no differences for the biostimulant application. Biostimulant doses of 1 and 2 L ha−1 increase the dry matter production per hectare in the nitrogen fertilization of 50 kg N ha−1 year−1, but its action is not effective with the highest nitrogen fertilization (150 kg N ha−1 year−1).


2016 ◽  
Vol 37 (4Supl1) ◽  
pp. 2487
Author(s):  
Giselle Abadia Campos Pereira ◽  
Leni Rodrigues Lima ◽  
Joelson Antônio Silva ◽  
Rosemay Lais Galati ◽  
Joanis Tilemahos Zervoudakis ◽  
...  

The study was carried out in a greenhouse with a 4X4 factorial arrangement randomized block design in order to evaluate the effects of nitrogen rates (0, 50, 100 and 150 mg dm-3) associated with cutting heights (10, 15, 20 and 25 cm) on dry matter production and the chemical composition of Massai grass. The seeding was done in pots with 11 kg of soil. 10 plants were kept per pot, and there were two cuts every 35 days. Nitrogen fertilization was split between the two cuts, where the first N application occurred after the uniformity cut and the second after the first cut. In each cut the plants were separated and weighed for botanical component evaluation: leaf blade and stem + sheath. After this, the samples were homogenized and analysed for dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF) content. In the first cut, the N fertilization caused a linear increase in DM production of 0.058 g pot-1 per each 1 mg dm-3 of N applied, as well as causing an increase of 0.549% in CP percentage, a 0.0124 pot-1 g increase in CP production and a reduction of 0.055% in NDF. In the second cut, N rates promoted a quadratic effect on DM production. A maximum DM production of 16.48 g pot-1 with 107.27 mg dm-3 of N was observed while CP production content was increased by 0.0092 g pot-1 for each 1 mg dm-3 N applied. In terms of linear responses to DM and PB, as well as the use efficiency calculated for Massai grass, recommended N doses range between 50 and 100 g dm-3.


2016 ◽  
Vol 50 (3) ◽  
Author(s):  
B. Sandhya Rani ◽  
T. Giridhara Krishna

An experiment was conducted during <italic>rabi</italic> season of 2010-12 to study the response of chickpea varieties to nutrients levels on a calcareous vertisols. The experiment comprised of four varieties i.e., NBeG-3, NBeG-28, JG-11 and KAK-2 and with four nitrogen levels i.e., 0, 20, 30 and 40 kg/ha laid out in factorial randomized block design with three replications. Among the varieties significantly higher dry matter production at harvest was recorded with JG-11 while it was lowest with KAK-2. More number of pods per plant and seed yield were recorded with JG-11 followed by NBeG-3 and NBeG-28, while lowest with KAK-2. Interaction effect among the different varieties and nitrogen levels was non significant with yield attributes. Significantly higher seed yield was recorded with JG-11 @ 40 kg of N/ha but was at par with N @ 20 and 30 kg /ha, followed by NBeG-3 and NBeG-28.


Sign in / Sign up

Export Citation Format

Share Document