Millerandage and flower abscission in ‘Grillo’, ‘Frappato’ and ‘Nero d’Avola’ grapevines: some probable causes

2018 ◽  
pp. 195-200 ◽  
Author(s):  
M.G. Barbagallo ◽  
G. Domina ◽  
F. Scafidi ◽  
A. Pisciotta
Keyword(s):  
2013 ◽  
Vol 87 ◽  
pp. 39-47 ◽  
Author(s):  
L.J. Rice ◽  
V. Soós ◽  
G.D. Ascough ◽  
E. Balázs ◽  
V. Ördög ◽  
...  

2001 ◽  
Vol 41 (5) ◽  
pp. 697 ◽  
Author(s):  
D. R. Beasley ◽  
D. C. Joyce ◽  
L. M. Coates ◽  
A. H. Wearing

Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20˚C. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.


2006 ◽  
Vol 48 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Glendon D. Ascough ◽  
Ntombizamatshali P. Mtshali ◽  
Noluyolo Nogemane ◽  
Johannes van Staden
Keyword(s):  

1999 ◽  
Vol 77 (2) ◽  
pp. 253-261 ◽  
Author(s):  
JP André ◽  
A M Catesson ◽  
M Liberman

The lifetime of many plant organs does not exceed a few weeks or a few months. These organs separate from the plant at the level of specialized abscission zones. The observation of xylem vasculature in abscission zones, a largely neglected subject, revealed original features when a vessel casting method was used. In all species of dicotyledons examined so far, flower and leaf abscission zones possessed heterogenous metaxylem vessels adjoining protoxylem and secondary xylem vessels with homogenous patterns of lignified thickenings. Heterogenous metaxylem vessel thickenings were helical, reticulate, or scalariform elements when in the abscission zone and pitted elements on the proximal and the distal sides. The origin and possible role of these vessels are considered. Data obtained on the flower abscission zone of tomato (Lycopersicon esculentum Mill.) suggest that formation of heterogenous vessels results from localized changes in the rhythm of cell differentiation and cell maturation inside the procambium-cambium continuum.Key words: abscission zone, cambium, differentiation, heterogenous vessels, procambium, vessel cast.


2015 ◽  
Vol 6 ◽  
Author(s):  
Sara Domingos ◽  
Pietro Scafidi ◽  
Vania Cardoso ◽  
Antonio E. Leitao ◽  
Rosario Di Lorenzo ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 3001
Author(s):  
Emilia Wilmowicz ◽  
Agata Kućko ◽  
Wojciech Pokora ◽  
Małgorzata Kapusta ◽  
Katarzyna Jasieniecka-Gazarkiewicz ◽  
...  

Yellow lupine is a great model for abscission-related research given that excessive flower abortion reduces its yield. It has been previously shown that the EPIP peptide, a fragment of LlIDL (INFLORESCENCE DEFICIENT IN ABSCISSION) amino-acid sequence, is a sufficient molecule to induce flower abortion, however, the question remains: What are the exact changes evoked by this peptide locally in abscission zone (AZ) cells? Therefore, we used EPIP peptide to monitor specific modifications accompanied by early steps of flower abscission directly in the AZ. EPIP stimulates the downstream elements of the pathway—HAESA and MITOGEN-ACTIVATED PROTEIN KINASE6 and induces cellular symptoms indicating AZ activation. The EPIP treatment disrupts redox homeostasis, involving the accumulation of H2O2 and upregulation of the enzymatic antioxidant system including superoxide dismutase, catalase, and ascorbate peroxidase. A weakening of the cell wall structure in response to EPIP is reflected by pectin demethylation, while a changing pattern of fatty acids and acyl lipids composition suggests a modification of lipid metabolism. Notably, the formation of a signaling molecule—phosphatidic acid is induced locally in EPIP-treated AZ. Collectively, all these changes indicate the switching of several metabolic and signaling pathways directly in the AZ in response to EPIP, which inevitably leads to flower abscission.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Sara Domingos ◽  
Joana Fino ◽  
Vânia Cardoso ◽  
Claudia Sánchez ◽  
José C. Ramalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document