Molecular response to cold storage in fruit of two zucchini cultivars differing in their chilling sensitivity

2019 ◽  
pp. 187-194
Author(s):  
F. Carvajal ◽  
R. Rosales ◽  
F. Palma ◽  
S. Manzano ◽  
M. Jamilena ◽  
...  
Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 515
Author(s):  
A. A. Lo’ay ◽  
Nada A. Mostafa ◽  
Salem Mesfir Al-Qahtani ◽  
Nadi Awad Al-Harbi ◽  
Sabry Hassan ◽  
...  

Mango fruits sourced from tropical yields have had a high commercial comeback from being viewed as susceptible to chilling injury under long storage durations. When the fruits are exposed to cold storage, this results in physiological changes due to the side effects of the storage on the fruits, expanding the rates of loss during the period between harvest and marketing. It is difficult to harvest mangoes as the fruits show varying maturities and are located in different positions on the trees. The purpose of this study was to test the idea that fruits’ location on the tree influences how the fruit behaves during cold storage. During two seasons (2019–2020), the impact of on-tree fruit location, i.e., sunny side (SUN; fruit exposed to the sun for most of the day), shade (SHA; fruit grown on the shady side of trees), and inside the canopy (INS; fruit grown inside the tree canopy), on the chilling sensitivity and the activities of antioxidant enzymes of ‘Zibda’ mangos stored at a low temperature (4 ± 1 °C) for 35 days was determined. In contrast to SHA and SUN mangos, INS fruits were shown to be progressively tolerant to low storage temperatures. These fruits also showed the highest activities of ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). In addition, the contents of O2− and H2O2 decreased in INS fruit during storage. Consequently, the cell membrane compartments were maintained, showing low accumulation of both malondialdehyde (MDA) and the protein carbonyl group (PCG) during storage. These results indicate that the fruit positions can also be considered at the time of harvesting for the classification of fruits before cold storage. This classification can also be added to the mango trading protocol to minimize the loss of economic returns by chilling injury.


2003 ◽  
Vol 13 (2) ◽  
pp. 328-332 ◽  
Author(s):  
Keri L. Morrelli ◽  
Betty M. Hess-Pierce ◽  
Adel A. Kader

The variation in chilling sensitivity of mature-green specialty bananas (Musa paradisiaca var. sapientum) and plantains (Musa paradisiaca var. paradisiaca) was examined using four cultivars of bananas and one plantain cultivar stored under various time and temperature combinations. Cold storage for 1 day at 5.0, 7.2, or 10.0 °C (41, 45, or 50 °F) resulted in acceptable fruit quality for up to 8 days at 20.0 °C (68 °F) for `Petite' and `Red Macabu' bananas and `Dominico Harton' plantains. `Grand Nain' and `Yangambi' bananas were considered unmarketable due to moderate to severe graying after 8 days at 20.0 °C when fruit were previously stored for 1 day at 5.0 or 7.2 °C. Storage for 3 days at 10.0 °C was acceptable for all cultivars tested, however 5 days at 10.0 °C resulted in moderate to severe browning and graying of the `Grand Nain' fruit. The traditional Cavendish-type, `Grand Nain', as well as `Petite' and `Yangambi', required temperatures greater than 10.0 °C for a 7-day storage duration while `Red Macabu' bananas could be safely stored for 7 days at 10.0 °C. Plantains could be stored at 7.2 °C for 7 days without visible chilling injury symptoms. The storage of specialty bananas and plantains at or above their minimum safe temperatures resulted in improved uniformity of ripening and overall quality of the fruit due to a decrease in chilling injury symptoms.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


2001 ◽  
Vol 120 (5) ◽  
pp. A351-A351
Author(s):  
N SCHWARZ ◽  
J KALFF ◽  
A TUERLER ◽  
T SARKAR ◽  
T BILLIAR ◽  
...  
Keyword(s):  

2010 ◽  
Vol 48 (01) ◽  
Author(s):  
Q Liu ◽  
DP Schultze ◽  
H Bruns ◽  
M Zorn ◽  
M Büchler ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document