scholarly journals A New Extended Burr XII Distribution

2017 ◽  
Vol 46 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Indranil Ghosh ◽  
Marcelo Bourguinon

In this paper, we propose a new lifetime distribution, namely the extended Burr XII distribution (using the technique as mentioned in Cordeiro et al. (2015)). We derive some basic properties of the new distribution and provide a Monte Carlo simulation study to evaluate the maximum likelihood estimates of model parameters. For illustrative purposes, two real life data sets have been considered as an application of the proposed model.

2020 ◽  
Vol 70 (1) ◽  
pp. 193-212
Author(s):  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
M. Arslan Nasir ◽  
Abdus Saboor ◽  
Emrah Altun ◽  
...  

AbstractIn this paper, we propose a new three-parameter modified Burr XII distribution based on the standard Burr XII distribution and the composition technique developed by [14]. Among others, we show that this technique has the ability to significantly increase the flexibility of the former Burr XII distribution, with respect to the density and hazard rate shapes. Also, complementary theoretical aspects are studied as shapes, asymptotes, quantiles, useful expansion, moments, skewness, kurtosis, incomplete moments, moments generating function, stochastic ordering, reliability parameter and order statistics. Then, a Monte Carlo simulation study is carried out to assess the performance of the maximum likelihood estimates of the modified Burr XII model parameters. Finally, three applications to real-life data sets are presented, with models comparisons. The results are favorable for the new modified Burr XII model.


Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Donatus Osaretin Omosigho

In this paper we introduced Gompertz Gumbel II (GG II) distribution which generalizes the Gumbel II distribution. The new distribution is a flexible exponential type distribution which can be used in modeling real life data with varying degree of asymmetry. Unlike the Gumbel II distribution which exhibits a monotone decreasing failure rate, the new distribution is useful for modeling unimodal (Bathtub-shaped) failure rates which sometimes characterised the real life data. Structural properties of the new distribution namely, density function, hazard function, moments, quantile function, moment generating function, orders statistics, Stochastic Ordering, Renyi entropy were obtained. For the main formulas related to our model, we present numerical studies that illustrate the practicality of computational implementation using statistical software. We also present a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGTT model. Three life data sets were used for applications in order to illustrate the flexibility of the new model.


Author(s):  
Mohamed Ibrahim Mohamed ◽  
Laba Handique ◽  
Subrata Chakraborty ◽  
Nadeem Shafique Butt ◽  
Haitham M. Yousof

In this article an attempt is made to introduce a new extension of the Fréchet model called the Xgamma Fréchet model. Some of its properties are derived. The estimation of the parameters via different estimation methods are discussed. The performances of the proposed estimation methods are investigated through simulations as well as real life data sets. The potentiality of the proposed model is established through modelling of two real life data sets. The results have shown clear preference for the proposed model compared to several know competing ones.


2021 ◽  
Vol 17 (2) ◽  
pp. 59-74
Author(s):  
S. Qurat Ul Ain ◽  
K. Ul Islam Rather

Abstract In this article, an extension of exponentiated exponential distribution is familiarized by adding an extra parameter to the parent distribution using alpha power technique. The new distribution obtained is referred to as Alpha Power Exponentiated Exponential Distribution. Various statistical properties of the proposed distribution like mean, variance, central and non-central moments, reliability functions and entropies have been derived. Two real life data sets have been applied to check the flexibility of the proposed model. The new density model introduced provides the better fit when compared with other related statistical models.


Author(s):  
Aliya Syed Malik ◽  
S.P. Ahmad

In this paper, a new generalization of Log Logistic Distribution using Alpha Power Transformation is proposed. The new distribution is named Alpha Power Log-Logistic Distribution. A comprehensive account of some of its statistical properties are derived. The maximum likelihood estimation procedure is used to estimate the parameters. The importance and utility of the proposed model are proved empirically using two real life data sets.


2021 ◽  
Vol 17 (1) ◽  
pp. 5-30
Author(s):  
S. A. Wani ◽  
S. Shafi

Abstract We obtained a new generalization of Lindley-Quasi Xgamma distribution by adding weight parameter to it through weighting technique and have shown the flexibility of proposed model. Expression for reliability measures, order statistics, Bonferroni curves & indices, Renyi entropy along with some other important properties are derived. Maximum likelihood estimation method is put to use for estimation of unknown parameters of proposed model. Simulation study for checking the performance of maximum likelihood estimates and for model comparison is carried out. Proposed model and its related models are fitted to real life data sets and goodness of fit measure Kolmogorov statistic & p-value, loss of information criteria’s AIC, BIC, AICC & HQIC are computed through R software to check the applicability of proposed model in real life. The significance of weight parameter is also tested by using likelihood ratio test for both randomly generated data as well as real life data.


2020 ◽  
Vol 70 (6) ◽  
pp. 1491-1510
Author(s):  
Muhammad Adnan Hussain ◽  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro

AbstractThe Kumaraswamy generalized family of distributions proposed by Cordeiro and de-Castro (2011), has received increased attention in modern distribution theory with 624 google citations, and more than 50 special models have been studied so far. We define another generator, and then propose a new Kumaraswamy generalized family of distributions by inducting this new generator. Some useful properties of the proposed family are obtained such as quantiles, linear representation of the density, moments and generating function. The method of maximum likelihood is used for estimating family parameters. The properties of a special model of the family, called new Kumaraswamy-Burr XII distribution, are reported. A simulation study is conducted to assess the performance of maximum likelihood estimates of the proposed model. Two real-life data sets are analyzed to illustrate the flexibility of proposed model.


2015 ◽  
Vol 4 (4) ◽  
pp. 132 ◽  
Author(s):  
Ahmed Z. Afify ◽  
G. G. Hamedani ◽  
Indranil Ghosh ◽  
M. E. Mead

<p>This paper introduces a new four-parameter lifetime model, which extends the Marshall-Olkin Fr\'{e}chet distribution introduced by Krishna et al. (2013), called the transmuted Marshall-Olkin Fr\'{e}chet distribution. Various structural properties including ordinary and incomplete moments, quantile and generating function, R\'{e}nyi and q-entropies and order statistics are<br />derived. The maximum likelihood method is used to estimate the model parameters. We illustrate the superiority of the proposed distribution over other existing distributions in the literature in modeling two real life data sets.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
Muhammad Ahsan Ul Haq ◽  
G. G. Hamedani ◽  
M. Elgarhy ◽  
Pedro Luiz Ramos

We study a new distribution called the Marshall-Olkin Power Lomax distribution. A comprehensive account of its mathematical properties including explicit expressions for the ordinary moments, moment generating function, order statistics, Renyi entropy, and probability weighted moments are derived. The model parameters are estimated by the method of maximum likelihood. Monte Carlo simulation study is carried out to estimate the parameters and the performance of the estimates is judged via the average biases and mean squared error values. The usefulness of the proposed model is illustrated via real-life data set.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Sign in / Sign up

Export Citation Format

Share Document