scholarly journals CALCULATION OF THE CENTRIFULAL PUMP CRITICAL FREQUENCIES BASED ON ITS DISCRETE MATHEMATICAL MODEL

Author(s):  
A. Y. Verbovoy ◽  
M. L. Sieryk ◽  
I. V. Pavlenko ◽  
A. A. Rudenko

Calculations of the centrifugal machines critical frequencies of the rotors are currently carried out on the basis of the finite element method using multi-functional software as same as ANSYS and other similar, that work with finite elements of the three-dimensional type, as well as some specialized computer programs working with the beam-type finite elements. Anyway, the finite element method is used. But in this case an user needs a lot of time for prepation of the initial data. Therefore, this article presents a calculation of the critical frequencies of the rotor of a centrifugal fuel pump of a liquid-propellant engine based on its discrete model. This calculation also includes an algorithm of results clarification. This model has been verificated by comparing the critical frequencies obtained in calculations based on the finite element beam model and discrete model with using the algorithm of results clarification and without it.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


1979 ◽  
Vol 24 (90) ◽  
pp. 489-490 ◽  
Author(s):  
J. J. Emery ◽  
E. A. Hanafy ◽  
G. H. Holdsworth ◽  
F. Mirza

Abstract The finite-element method is being used to simulate glacier flow problems, with particular emphasis on the surge behaviour of the Barnes Ice Cap, Baffin Island. Following an advanced feasibility study to determine the influence of major factors such as bed topography and flow relationships, a refined simulation model is being developed to incorporate realistically: the thermal regime of the ice mass; large deformations during flow and sliding; basal sliding zones; a temperature and stress dependent ice flow relationship; mass balance; and three-dimensional influences. The findings of the advanced feasibility study on isothermal, steady-state flow of the Barnes Ice Cap are presented in the paper before turning to a detailed discussion of the refined simulation model and its application to surging. It is clear that the finite-element method allows necessary refinements not available to analytical approaches.


2013 ◽  
Vol 22 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Guilherme Carvalho Silva ◽  
Tulimar Machado Pereira Cornacchia ◽  
Estevam Barbosa de Las Casas ◽  
Cláudia Silami de Magalhães ◽  
Allyson Nogueira Moreira

1988 ◽  
Vol 25 (1) ◽  
pp. 33-49 ◽  
Author(s):  
S. Ratnajeevan H. Hoole

The rationale for teaching undergraduate electromagnetics partly through the finite element method, is put forward. Properly presented, the finite element method, easily within the ken of the engineering undergraduate, promotes clarity and helps to replace large portions of syllabi devoted to special solution methods, with problems of industrial magnitude and character.


Author(s):  
Olivier A. Bauchau ◽  
Minghe Shan

Abstract The application of the finite element method to the modeling of Cosserat solids is investigated in detail. In two- and three-dimensional elasticity problems, the nodal unknowns are the components of the displacement vector, which form a linear field. In contrast, when dealing with Cosserat solids, the nodal unknowns form the special Euclidean group SE(3), a nonlinear manifold. This observation has numerous implications on the implementation of the finite element method and raises numerous questions: (1) What is the most suitable representation of this nonlinear manifold? (2) How is it interpolated over one element? (3) How is the associated strain field interpolated? (4) What is the most efficient way to obtain the discrete equations of motion? All these questions are, of course intertwined. This paper shows that reliable schemes are available for the interpolation of the motion and curvature fields. The interpolated fields depend on relative nodal motions only, and hence, are both objective and tensorial. Because these schemes depend on relative nodal motions only, only local parameterization is required, thereby avoiding the occurrence of singularities. For Cosserat solids, it is preferable to perform the discretization operation first, followed by the variation operation. This approach leads to considerable computation efficiency and simplicity.


Sign in / Sign up

Export Citation Format

Share Document