scholarly journals Effect of L-arginine and carnitine on cathepsin L and H activity and lysosomal membranes permeability in myocardium in expressed hyperhomocysteinemia

2015 ◽  
Vol 96 (5) ◽  
pp. 819-824
Author(s):  
A S Il’icheva ◽  
M A Fomina

Aim. To study the activity of lysosomal cysteine proteases (cathepsins L, H) and acid phosphatase, changing of permeability, stability of myocardial lysosomal membranes in rats in experimental expressed hyperhomocysteinemia model, and while administering L-arginine and carnitine. Methods. The study was performed on male Wistar rats kept on standard vivarium conditions divided into three control and three experimental groups of 8 animals each. Experimental samples were administered methionine, or combination of L-arginine and carnitine with methionine. The level of serum homocysteine was measured by ELISA. Cathepsin L and H activity was detected by spectrofluorimetric method. Acid phosphatase activity was recorded using the «end point» method. Results. In the model of expressed hyperhomocysteinemia the increase of cathepsin H total activity due to both lysosomal and nonlysosomal fractions was found. These changes were observed along with the general increase of lysosomal membranes permeability. When correcting hyperhomocysteinemia with L-arginine and carnitine a decrease of cathepsin L and H levels was noted as well as positive effect on the myocardial lysosomal membranes stability. Conclusion. Expressed hyperhomocysteinemia is accompanied by statistically significant increase of both lysosomal and cytoplasmic fractions of the cathepsin H activity, indicating the lysosomal membranes permeabilisation phenomenon; L-carnitine and arginine correct hyperhomocysteinaemia effects, leading to cathepsin L and H reduced activity and having a stabilizing effect on the lysosomal membranes of cardiomyocytes.

2016 ◽  
Vol 97 (2) ◽  
pp. 250-255 ◽  
Author(s):  
A I Arapova ◽  
M A Fomina

Aim. To study the effect of L-arginine and its analogue N-nitro-L-arginine methyl ester (L-NAME) alone and in combination on lysosomal cysteine proteolysis and lysosomal membranes state in rat aorta.Methods. The study was performed on male Wistar rats kept under standard vivarium conditions and divided into three control and three experimental groups of 8 animals each. The experimental samples included groups with L-arginine and/or L-NAME administration. The indicators were studied in the rat aorta homogenate precipitating and non precipitating fractions. Acid phosphatase activity was determined by a standardized method of «end point», the cathepsins B, L and H activity was studied by spectrofluorimetric method.Results. When simulating the changes of nitric oxide synthesis level using L-arginine, the increase of the total cathepsins activity was detected, acid phosphatase lability coefficient was reduced, what is characterized by general lysosomal membranes stabilization. L-NAME group, in contrast, is characterized by a decrease in the cathepsin B and H activity indicators, differences from arginine group were observed in the cathepsin H in lysosomal and general fractions, lysosomal membrane is labile. Combined drugs administration reduces the total cathepsins activity, while there is an increase of the acid phosphatase total activity, all indicators suggest lysosomal membranes labilization.Conclusion. L-arginine at a dose of 500 mg/kg causes increase in the total cathepsins B, L and H activity in rat aorta due to lysosomal fraction; L-arginine action leads to lysosomal membranes stabilization; L-NAME group in cathepsin H shows a decrease in the cathepsins secretion level with decreased total activity due to both factions; combined administration of arginine + L-NAME group in cathepsin B is characterized by an increase in secretion due to lysosomes membrane labilization.


2017 ◽  
Vol 25 (1) ◽  
pp. 14-20 ◽  
Author(s):  
M A. Fomina ◽  
A M. Kudlaeva ◽  
A N. Ryabkov

The influence of L-carnitine in vitro on the lysosomal cysteine proteinase activity and stability of the lysosomal membrane of the liver homogenates of intact sexually Mature female rats of Wistar line weighing 280-330 g were studied. In the experimental groups isolated lysosomes were incubated in vitro in a solution of L-carnitine during 1, 2 and 4 hours, in the control groups in vitro incubation was carried out in a medium of isolating solution. The activity of ca-thepsins B, L and H was investigated by spectrofluorimetric method of Barrett & Kirschke in two fractions - lysosomal and outside of lysosomes. The activity of acid phosphatase was used as the main marker of a membrane labilization. In vitro incubation of lysosomes showed that carnitine at a concentration of 5 mM increases the total activity of cathepsin B in a one-hour incubation at 73,2% (p=0,008), cathepsin L in a two- and four-hour incubation - at 77,7% (p=0,005) and 42,3% (p=0,013) respectively, and reduces the overall activity of the cathepsin H in a one-hour incubation at 200,0% (p=0,008), in a two-hour - by 67,9% (p=0,05), in a four-hour -27,1% (p=0,02). In addition, incubation in 5 mM L-carnitine solution leads to an increase of unsedimentable activity and fall sedimentaries activity for cathepsin L in a two-hour, and for acid phosphatase - in a two - and four-hour exposure. 5 mM L-carnitine in one - and two-hour incubation stabilizes lysosomal membrane (whereas increase in incubation time up to 4 hours leads to its damage) and increases the selective permeability of the lysosomal membrane for the studied cathepsins, to the greatest extent - for cathepsin H.


2015 ◽  
Vol 96 (5) ◽  
pp. 876-882
Author(s):  
M A Fomina ◽  
A M Kudlaeva

Aim. Assessment of direct influence of arginine on lysosomal cysteine proteases activity in vitro, in isolation as well as the stimulation of oxidative stress. Methods. The study was conducted on the 72 female conventional mature Wistar rats 280-320 g divided into 6 series of 12 rats each. Lysosome slurries were isolated from the liver of intact animals with a subsequent in vitro incubation in a sucrose solution, in the presence of L-arginine, as well as in the presence of L-arginine accompanied by the stimulation of oxidative stress. Samples of control groups were exposed in vitro with the addition of isolate and oxidant, respectively. Each batch was reproduced three times, incubation was performed at 37 °C in a water bath for 1, 2 and 4 hours. The activity of cathepsins B, L and H was studied using spectrofluorimetric method in two fractions - intra- and extralysosomal. Acid phosphatase activity was used as the main marker of membrane labialization. Results. One hour Incubation with 5 mM arginine in vitro led to inhibition of the cathepsin H activity and lysosomal membrane damage, however, further increase in incubation time led to its stabilization. In vitro exposure to 5 mM H2O2 caused an increase in activity of cathepsines B and L and the drop in the cathepsin H activity without obvious changes in the distribution of enzymes between extra and intralysosomal fractions. In a state of oxidative stress 2-hour in vitro incubation with 5 mM arginine reduced the permeability of lysosomal membranes for cathepsines B, H and L; while 4-hour incubation led to the destabilization of lysosomal membranes. Conclusion. The direct effect of arginine at a concentration of 5 mM within the 1,2 and 4-hour time intervals leads to a distinct change as a lysosomal cysteine protease activity and stability of lysosomal membranes.


2008 ◽  
Vol 54 (5) ◽  
pp. 883-891 ◽  
Author(s):  
Danielle M.P. Oliveira ◽  
Isabela B. Ramos ◽  
Flavia C.G. Reis ◽  
Ana P.C.A. Lima ◽  
Ednildo A. Machado

2022 ◽  
Vol 12 ◽  
Author(s):  
Sufei Jiang ◽  
Yiwei Xiong ◽  
Wenyi Zhang ◽  
Junpeng Zhu ◽  
Dan Cheng ◽  
...  

Cathepsin L genes, which belonged to cysteine proteases, were a series of multifunctional protease and played important roles in a lot of pathological and physiological processes. In this study, we analyzed the characteristics a cathepsin L (named Mn-CL2) in the female oriental river prawn, Macrobrachium nipponense which was involved in ovary maturation. The Mn-CL2 was1,582 bp in length, including a 978 bp open reading frame that encoded 326 amino acids. The Mn-CL2 was classified into the cathepsin L group by phylogenetic analysis. Real-time PCR (qPCR) analysis indicated that Mn-CL2 was highly expressed in the hepatopancreas and ovaries of female prawns. During the different ovarian stages, Mn-CL2 expression in the hepatopancreas and ovaries peaked before ovarian maturation. In situ hybridization studies revealed that Mn-CL2 was localized in the oocyte of the ovary. Injection of Mn-CL2 dsRNA significantly reduced the expression of vitellogenin. Changes in the gonad somatic index also confirmed the inhibitory effects of Mn-CL2 dsRNA on ovary maturation. These results suggest that Mn-CL2 has a key role in promoting ovary maturation.


2005 ◽  
Vol 386 (7) ◽  
pp. 699-704 ◽  
Author(s):  
Luciano Puzer ◽  
Juliana Vercesi ◽  
Marcio F.M. Alves ◽  
Nilana M.T. Barros ◽  
Mariana S. Araujo ◽  
...  

Abstract We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 μM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg). A potentiation of the hypotensive effect caused by cathepsin L was observed by previous administration of the angiotensin I-converting enzyme inhibitor captopril (5 mg/kg). In vitro studies indicated that cathepsin L excised bradykinin from the synthetic fluorogenic peptide Abz-MTSVIRRPPGFSPFRAPRV-NH2, based on the Met375–Val393 sequence of rat kininogen (Abz=o-aminobenzoic acid). In conclusion, our data indicate that in vivo cathepsin L releases a kinin-related peptide, and in vitro experiments suggest that the kinin generated is bradykinin. Although it is well known that cysteine proteases are strongly inhibited by kininogen, cathepsin L could represent an alternative pathway for kinin production in pathological processes.


2021 ◽  
Vol 30 (1) ◽  
pp. 102-109
Author(s):  
Dhananjay Mishra ◽  
K.Venu Achari

We determined the kinetics of metamorphosis, apoptosis, and tail regression in Rana tigrina. Acid phosphatase activity (µMole Pi.hr-1.tail-1) in the growing and regressing tail attended six to thirty fold increase respectively. However total activity in the trunk was decreased through progressive growing stages of metamorphosis. Total protein content in the trunk of tadpoles at climax stage (XXI) was decrease (35%) from 2.6mg/ml to 1.7mg/ml. The tail of tadpole tissue has shown a two fold increase in total Ribonucleic Acid (RNA) content from stage III to stage XVIII. But there was again decrease in total RNA content at climax stage (stage XXI). This might be possible due to decreased protein synthetic status. When the experiment was performed in trunk homogenate the amount of total carbohydrate (mg/ml) was slightly increased from 37mg/ml to 38.6mg/ml. this might be due to increase in the activity of α-amylase enzymes in the viscera of developing tadpole when it reached the climax stage.


1990 ◽  
Vol 259 (6) ◽  
pp. E822-E827 ◽  
Author(s):  
D. M. Bechet ◽  
A. Listrat ◽  
C. Deval ◽  
M. Ferrara ◽  
J. F. Quirke

The effect of the beta-adrenergic agonist cimaterol on bovine and chicken primary myotubes was assessed. Cimaterol at 10-100 nM concentrations reduced cathepsin B benzyloxy-carbonyl-Arg-Arg-4-methyl-7-coumarylamide hydrolyzing activity, as well as benzyloxycarbonyl-Phe-Arg-4-methyl-7-coumarylamide hydrolysis, which is a substrate for both cathepsin B and cathepsin L. Maximum effect was observed after 6-16 h treatment. Cathepsin H Arg-4-methyl-7-coumarylamide hydrolyzing activity was low and not significantly affected by cimaterol treatment. Despite decreasing cathepsin activities, cimaterol also increased proteolysis rates but induced no detectable effect on protein synthesis rates. These observations suggest that beta-agonists, as a result of a direct action on muscle, can decrease cathepsin activities but that beta-agonist-induced muscle hypertrophy may not be due to a direct effect on muscle cells.


Sign in / Sign up

Export Citation Format

Share Document