scholarly journals Simulation of a gas-condensate mixture passing through a porous medium in depletion mode

2019 ◽  
Vol 27 (3) ◽  
pp. 205-216
Author(s):  
Alina V. Volokhova ◽  
Elena V. Zemlyanaya ◽  
Vladimir V. Kachalov ◽  
Victor S. Rikhvitsky ◽  
Vadim N. Sokotushchenko

One of important tasks in a development of gas-condensate fields is to minimize hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer. The search for the optimal gas production regime is carried out both on the basis of laboratory experiments and on the base of computer simulation. In this regard, the relevant is the verification of the constructed mathematical models by means of comparison of numerical results with experimental data obtained on the laboratory models of a hydrocarbon reservoirs. Within the classical approach on the basis of the Darcy law and the law continuity for flows, the model is formulated that describes the passing a multicomponent gas-condensate mixture through a porous medium in the depletion mode. The numerical solution of the corresponding system of nonlinear partial differential equations is implemented on the basis of the combined use of the C++ programming language and the Maple software. Shown that the approach used provides an agreement of results of numerical simulations with experimental data on the dynamics of hydrocarbon recoverability depending on the pressure obtained at VNIIGAZ, Ukhta.

Author(s):  
Alina V. Volokhova ◽  
Elena V. Zemlyanaya ◽  
Vladimir V. Kachalov ◽  
Victor S. Rikhvitsky ◽  
Vadim N. Sokotushchenko

One of important tasks in a development of gas-condensate fields is to minimize hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer. The search for the optimal gas production regime is carried out both on the basis of laboratory experiments and on the base of computer simulation. In this regard, the relevant is the verification of the constructed mathematical models by means of comparison of numerical results with experimental data obtained on the laboratory models of a hydrocarbon reservoirs. Within the classical approach on the basis of the Darcy law and the law continuity for flows, the model is formulated that describes the passing a multicomponent gas-condensate mixture through a porous medium in the depletion mode. The numerical solution of the corresponding system of nonlinear partial differential equations is implemented on the basis of the combined use of the C++ programming language and the Maple software. Shown that the approach used provides an agreement of results of numerical simulations with experimental data on the dynamics of hydrocarbon recoverability depending on the pressure obtained at VNIIGAZ, Ukhta.


2019 ◽  
Vol 27 (3) ◽  
pp. 205-216
Author(s):  
Alina V. Volokhova ◽  
Elena V. Zemlyanaya ◽  
Vladimir V. Kachalov ◽  
Victor S. Rikhvitsky ◽  
Vadim N. Sokotushchenko

One of important tasks in a development of gas-condensate fields is to minimize hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer. The search for the optimal gas production regime is carried out both on the basis of laboratory experiments and on the base of computer simulation. In this regard, the relevant is the verification of the constructed mathematical models by means of comparison of numerical results with experimental data obtained on the laboratory models of a hydrocarbon reservoirs. Within the classical approach on the basis of the Darcy law and the law continuity for flows, the model is formulated that describes the passing a multicomponent gas-condensate mixture through a porous medium in the depletion mode. The numerical solution of the corresponding system of nonlinear partial differential equations is implemented on the basis of the combined use of the C++ programming language and the Maple software. Shown that the approach used provides an agreement of results of numerical simulations with experimental data on the dynamics of hydrocarbon recoverability depending on the pressure obtained at VNIIGAZ, Ukhta.


2019 ◽  
Vol 27 (3) ◽  
pp. 205-216
Author(s):  
Alina V. Volokhova ◽  
Elena V. Zemlyanaya ◽  
Vladimir V. Kachalov ◽  
Victor S. Rikhvitsky ◽  
Vadim N. Sokotushchenko

One of important tasks in a development of gas-condensate fields is to minimize hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer. The search for the optimal gas production regime is carried out both on the basis of laboratory experiments and on the base of computer simulation. In this regard, the relevant is the verification of the constructed mathematical models by means of comparison of numerical results with experimental data obtained on the laboratory models of a hydrocarbon reservoirs. Within the classical approach on the basis of the Darcy law and the law continuity for flows, the model is formulated that describes the passing a multicomponent gas-condensate mixture through a porous medium in the depletion mode. The numerical solution of the corresponding system of nonlinear partial differential equations is implemented on the basis of the combined use of the C++ programming language and the Maple software. Shown that the approach used provides an agreement of results of numerical simulations with experimental data on the dynamics of hydrocarbon recoverability depending on the pressure obtained at VNIIGAZ, Ukhta.


2019 ◽  
Vol 27 (3) ◽  
pp. 205-216
Author(s):  
Alina V. Volokhova ◽  
Elena V. Zemlyanaya ◽  
Vladimir V. Kachalov ◽  
Victor S. Rikhvitsky ◽  
Vadim N. Sokotushchenko

One of important tasks in a development of gas-condensate fields is to minimize hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer. The search for the optimal gas production regime is carried out both on the basis of laboratory experiments and on the base of computer simulation. In this regard, the relevant is the verification of the constructed mathematical models by means of comparison of numerical results with experimental data obtained on the laboratory models of a hydrocarbon reservoirs. Within the classical approach on the basis of the Darcy law and the law continuity for flows, the model is formulated that describes the passing a multicomponent gas-condensate mixture through a porous medium in the depletion mode. The numerical solution of the corresponding system of nonlinear partial differential equations is implemented on the basis of the combined use of the C++ programming language and the Maple software. Shown that the approach used provides an agreement of results of numerical simulations with experimental data on the dynamics of hydrocarbon recoverability depending on the pressure obtained at VNIIGAZ, Ukhta.


2010 ◽  
Vol 7 ◽  
pp. 202-210
Author(s):  
V.V. Khabirov ◽  
S.V. Khabirov

The scheme of gas production from gas hydrates on underwater slopes is offered. The existing modern technologies which have to be used are listed. The mathematical apparatus for calculations describes a filtration of polyphase environments in the relative frame elastic porous medium with phase change.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2018 ◽  
pp. 11-20 ◽  
Author(s):  
Yu. V. Vasilev ◽  
D. A. Misyurev ◽  
A. V. Filatov

The authors created a geodynamical polygon on the Komsomolsk oil and gas condensate field to ensure the industrial safety of oil and gas production facilities. The aim of its creation is mul-tiple repeated observations of recent deformation processes. Analysis and interpretation of the results of geodynamical monitoring which includes class II leveling, satellite observations, radar interferometry, exploitation parameters of field development provided an opportunity to identify that the conditions for the formation of recent deformations of the earth’s surface is an anthropogenic factor. The authors identified the relationship between the formation of subsidence trough of the earth’s surface in the eastern part of the field with the dynamics of accumulated gas sampling and the fall of reservoir pressures along the main reservoir PK1 (Cenomanian stage).


Sign in / Sign up

Export Citation Format

Share Document