Ground-Motion Analysis of Hydraulic-Fracturing Induced Seismicity at Close Epicentral Distance

2019 ◽  
Vol 110 (1) ◽  
pp. 331-344
Author(s):  
Germán Rodríguez-Pradilla ◽  
David W. Eaton

ABSTRACT The application of seismic hazard analysis methods developed for natural earthquakes can provide an effective framework for managing risks of induced seismicity (IS) sequences, particularly for assessment of potential risk to nearby infrastructure. Among various factors, the reliability of these methods depends on the accuracy of the ground-motion prediction equation (GMPE)—especially at close epicentral distances where ground motions are expected to be highest. In addition, potential impacts on local infrastructure can be assessed based on ground-motion-derived intensity values, which provide a basis for some traffic-light protocols that are used for managing fluid IS. GMPEs in many areas of the world, however, are poorly calibrated at close epicentral distances, because the availability of near-source seismograph stations is generally very sparse. This study investigates ground motions generated by an IS sequence, up to local magnitude (ML) 3.77 that occurred during a hydraulic-fracturing stimulation in the Duvernay shale play in central Alberta, western Canada. The sequence was monitored using a near-surface array that was located directly above the hydraulically fractured horizontal wells, providing accurate ground-motion measurements at hypocentral distances <10  km. The local array consisted of a combination of geophones cemented in shallow wellbores to depth of ∼27  m, shallow buried broadband seismometers, and a strong-motion accelerometer. This configuration enabled direct measurement of near-surface seismic velocities in the top 27 m, which provided robust VS30 data used to correct observed ground motions for local site-amplification effects. Our data set extends previous analyses in this region by providing new measurements very close to the epicenters of moderate earthquakes and shows that a recently developed GMPE provides accurate near-source ground-motion estimates.

Author(s):  
Paul Somerville

This paper reviews concepts and trends in seismic hazard characterization that have emerged in the past decade, and identifies trends and concepts that are anticipated during the coming decade. New methods have been developed for characterizing potential earthquake sources that use geological and geodetic data in conjunction with historical seismicity data. Scaling relationships among earthquake source parameters have been developed to provide a more detailed representation of the earthquake source for ground motion prediction. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude - distance - soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near- fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes. The probabilistic approach to characterizing the ground motion that a given site will experience in the future is very compatible with current trends in earthquake engineering and the development of building codes. Performance based design requires a more comprehensive representation of ground motions than has conventionally been used. Ground motions estimates are needed at multiple annual probability levels, and may need to be specified not only by response spectra but also by suites of strong motion time histories for input into time-domain non-linear analyses of structures.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


Author(s):  
Fabio Sabetta ◽  
Antonio Pugliese ◽  
Gabriele Fiorentino ◽  
Giovanni Lanzano ◽  
Lucia Luzi

AbstractThis work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Zhangxin Chen ◽  
Fei Gu ◽  
Mathab Ghoroori ◽  
...  

Summary The relationships among formation properties, fracturing operations, and induced earthquakes nucleated at distinctive moments and positions remain unclear. In this study, a complete data set on formations, seismicity, and fracturing treatments is collected in Fox Creek, Alberta, Canada. The data set is then used to characterize the induced seismicity and evaluate its susceptibility toward fracturing stimulations via integration of geology, geomechanics, and hydrology. Five mechanisms are identified to account for spatiotemporal activation of the nearby faults in Fox Creek, where all major events [with a moment magnitude (Mw) greater than 2.5] are caused by the increase in pore pressure and poroelastic stress during the fracturing operation. In addition, an integrated geological index (IGI) and a combined geomechanical index (CGI) are first proposed to indicate seismicity susceptibility, which is consistent with the spatial distribution of induced earthquakes. Finally, mitigation strategy results suggest that enlarging a hydraulic fracture-fault distance and decreasing a fracturing job size can reduce the risk of potential seismic activities.


1999 ◽  
Vol 89 (4) ◽  
pp. 854-866 ◽  
Author(s):  
John E. Ebel ◽  
Alan L. Kafka

Abstract We have developed a Monte Carlo methodology for the estimation of seismic hazard at a site or across an area. This method uses a multitudinous resampling of an earthquake catalog, perhaps supplemented by parametric models, to construct synthetic earthquake catalogs and then to find earthquake ground motions from which the hazard values are found. Large earthquakes extrapolated from a Gutenberg-Richter recurrence relation and characteristic earthquakes can be included in the analysis. For the ground motion attenuation with distance, the method can use either a set of observed ground motion observations from which estimates are randomly selected, a table of ground motion values as a function of epicentral distance and magnitude, or a parametric ground motion attenuation relation. The method has been tested for sites in New England using an earthquake catalog for the northeastern United States and southeastern Canada, and it yields reasonable ground motions at standard seismic hazard values. This is true both when published ground motion attenuation relations and when a dataset of observed peak acceleration observations are used to compute the ground motion attenuation with distance. The hazard values depend to some extent on the duration of the synthetic catalog and the specific ground motion attenuation used, and the uncertainty in the ground motions increases with decreasing hazard probability. The program gives peak accelerations that are comparable to those of the 1996 U.S. national seismic hazard maps. The method can be adapted to compute seismic hazard for cases where there are temporal or spatial variations in earthquake occurrence rates or source parameters.


2021 ◽  
Author(s):  
Eser Çakti ◽  
Karin Sesetyan ◽  
Ufuk Hancilar ◽  
Merve Caglar ◽  
Emrullah Dar ◽  
...  

<p>The Mw 6.9 earthquake that took place offshore between the Greek island of Samos and Turkey’s İzmir province on 30 October 2020 came hardly as a surprise. Due to the extensional tectonic regime of the Aegean and high deformation rates, earthquakes of similar size frequently occur in the Aegean Sea on fault segments close to the shores of Turkey, affecting the settlements on mainland Turkey and on the Greek Islands. Samos-Sigacik earthquake had a normal faulting mechanism. It was recorded by the strong motion networks in Turkey and Greece. Although expected, the earthquake was an  outstanding event in the sense of  highly localized, significant levels of building damage as a result of amplified ground motion levels. This presentation is an overview of strong ground motion characteristics of this important event both regionally and locally. Mainshock records suggest that local site effects, enhanced by basin effects could be responsible for structural damage in central Izmir, the third largest city of Turkey located at 60-70 km epicentral distance. We installed a seven-station network in Bayraklı and Karşıyaka districts of İzmir within three days of the mainshock in search of site and basin effects.  Through analysis of recorded aftershocks we explore the amplification characeristics of soils in the two aforementioned districts  and try to understand the role basin effects might have played in the resulting ground motion levels and consequently damage. </p>


2020 ◽  
Vol 110 (5) ◽  
pp. 2380-2397 ◽  
Author(s):  
Gemma Cremen ◽  
Maximilian J. Werner ◽  
Brian Baptie

ABSTRACT An essential component of seismic hazard analysis is the prediction of ground shaking (and its uncertainty), using ground-motion models (GMMs). This article proposes a new method to evaluate (i.e., rank) the suitability of GMMs for modeling ground motions in a given region. The method leverages a statistical tool from sensitivity analysis to quantitatively compare predictions of a GMM with underlying observations. We demonstrate the performance of the proposed method relative to several other popular GMM ranking procedures and highlight its advantages, which include its intuitive scoring system and its ability to account for the hierarchical structure of GMMs. We use the proposed method to evaluate the applicability of several GMMs for modeling ground motions from induced earthquakes due to U.K. shale gas development. The data consist of 195 recordings at hypocentral distances (R) less than 10 km for 29 events with local magnitude (ML) greater than 0 that relate to 2018/2019 hydraulic-fracture operations at the Preston New Road shale gas site in Lancashire and 192 R<10  km recordings for 48 ML>0 events induced—within the same geologic formation—by coal mining near New Ollerton, North Nottinghamshire. We examine: (1) the Akkar, Sandikkaya, and Bommer (2014) models for European seismicity; (2) the Douglas et al. (2013) model for geothermal-induced seismicity; and (3) the Atkinson (2015) model for central and eastern North America induced seismicity. We find the Douglas et al. (2013) model to be the most suitable for almost all of the considered ground-motion intensity measures. We modify this model by recomputing its coefficients in line with the observed data, to further improve its accuracy for future analyses of the seismic hazard of interest. This study both advances the state of the art in GMM evaluation and enhances understanding of the seismic hazard related to U.K. shale gas development.


2019 ◽  
Vol 35 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Georgios Zalachoris ◽  
Ellen M. Rathje

A ground motion model (GMM) tuned to the characteristics of the observed, and potentially induced, seismicity in Texas, Oklahoma, and Kansas is developed using a database of 4,528 ground motions recorded during 376 events of Mw > 3.0 in the region. The GMM is derived using the referenced empirical approach with an existing Central and Eastern North America model as the reference GMM and is applicable for Mw = 3.0–5.8 and hypocentral distances less than 500 km. The proposed model incorporates weaker magnitude scaling than the reference GMM for periods less than about 1.0 s, resulting in smaller predicted ground motions at larger magnitudes. The proposed model predicts larger response spectral accelerations at short hypocentral distances (≤20 km), which is likely because of the shallow hypocenters of events in Texas, Oklahoma, and Kansas. Finally, the VS30 scaling for the newly developed model predicts less amplification at VS30 < 600 m/s than the reference GMM, which is likely because of the generally thinner sediments in the study area. This finding is consistent with recent studies regarding site amplification in Central and Eastern North America.


Sign in / Sign up

Export Citation Format

Share Document