Directivity of M 3.1 Earthquake near Anza, California and the Effect on Peak Ground Motion

2019 ◽  
Vol 110 (1) ◽  
pp. 312-318
Author(s):  
Jon B. Fletcher ◽  
John Boatwright

ABSTRACT We show the effect of rupture directivity on peak ground-motion values for a moderate magnitude event at Anza, California, and neighboring stations at the Imperial Valley. The event was located near Borrego Springs on the west side of the Salton Sea and was well recorded at broadband stations near Anza, California, and at stations on the west side of the Imperial Valley. After correcting for regional attenuation, an anomalously large residual in peak motion was observed at station ERR just to the southeast of the epicenter. Using the algorithm from Boatwright (2007), peak motions from the regional seismic networks in southern California were inverted to determine directivity, which was to the southeast along the trend of the San Jacinto fault toward station ERR. This algorithm uses peak values compiled for the ShakeMap system mostly at regional distances. It does not capture the main features of the source time function (STF) predicted by directivity. Consequently, we determined the second-degree moments for this earthquake, which confirmed that station ERR has a shorter and higher STF compared to stations to the northwest suggesting rupture propagated to the southeast. The azimuthal distribution of local stations is sparse, but nevertheless the largest amplitudes (such as at station ERR) correlate well with the maximum in the radiation pattern and smaller values with the minima, which is the radiation pattern for SH plus the effect of directivity. Using the data from the analysis of the second-degree moments, the characteristic length of the fault is 0.58 km, assuming an idealized unilateral extended rupture with a rupture time of 0.09 s. This yields an apparent rupture velocity of 6.4  km/s for an idealized model, which is super shear. This value is model dependent and would change if, for example, the rupture was bilateral. Although this value is even greater than the P-wave velocity, it supports the idea that the rupture velocity is super shear and would enhance the correlation between the peak motions and the radiation pattern.

2014 ◽  
Vol 30 (3) ◽  
pp. 1117-1153 ◽  
Author(s):  
Brian S.-J. Chiou ◽  
Robert R. Youngs

We present an update to our 2008 NGA model for predicting horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The update is based on analysis of the greatly expanded NGA-West2 ground motion database and numerical simulations. The updated model contains minor adjustments to our 2008 functional form related to style of faulting effects, hanging wall effects, scaling with the depth to top of rupture, scaling with sediment thickness, and the inclusion of additional terms for the effects of fault dip and rupture directivity. In addition, we incorporate regional differences in far-source distance attenuation and site effects between California and other active tectonic regions. Compared to our 2008 NGA model, the predicted medians by the updated model are similar for M > 7 and are lower for M < 5. The aleatory variability is larger than that obtained in our 2008 model.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1553-1583
Author(s):  
Stephen H. Hartzell ◽  
Thomas H. Heaton

Abstract A least-squares point-by-point inversion of strong ground motion and teleseismic body waves is used to infer the fault rupture history of the 1979 Imperial Valley, California, earthquake. The Imperial fault is represented by a plane embedded in a half-space where the elastic properties vary with depth. The inversion yields both the spatial and temporal variations in dislocation on the fault plane for both right-lateral strike-slip and normal dip-slip components of motion. Inversions are run for different fault dips and for both constant and variable rupture velocity models. Effects of different data sets are also investigated. Inversions are compared which use the strong ground motions alone, the teleseismic body waves alone, and simultaneously the strong ground motion and teleseismic records. The inversions are stabilized by adding both smoothing and positivity constraints. The moment is estimated to be 5.0 × 1025 dyne-cm and the fault dip 90° ± 5°. Dislocation in the hypocentral region south of the United States-Mexican border is relatively small and almost dies out near the border. Dislocation then increases sharply north of the border to a maximum of about 2 m under Interstate 8. Dipslip motion is minor compared to strike-slip motion and is concentrated in the sediments. The best-fitting constant rupture velocity is 80 per cent of the local shear-wave velocity. However, there is a suggestion that the rupture front accelerated from the hypocenter northward. The 1979 Imperial Valley earthquake can be characterized as a magnitude 5 earthquake at the hypocenter which then grew into or triggered a magnitude 6 earthquake north of the border.


2018 ◽  
Author(s):  
Sebastian von Specht ◽  
Ugur Ozturk ◽  
Georg Veh ◽  
Fabrice Cotton ◽  
Oliver Korup

Abstract. The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wavefield surrounding the fault during an earthquake. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (MW 7.1) in central Kyūshū (Japan). Although the distribution of some 1,500 earthquake-triggered landslides as function of rupture distance is consistent with the observed Arias intensity, the landslides are more concentrated to the northeast of the southwest-northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors can sufficiently explain the landslide distribution or orientation (aspect), although the landslide headscarps coincide with elevated hillslope inclination and MAF. We propose a new physics-based ground motion model that accounts for the seismic rupture effects, and demonstrate that the low-frequency seismic radiation pattern consistent with the overall landslide distribution. The spatial landslide distribution is primarily influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 463-486 ◽  
Author(s):  
Sebastian von Specht ◽  
Ugur Ozturk ◽  
Georg Veh ◽  
Fabrice Cotton ◽  
Oliver Korup

Abstract. The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wave field surrounding the fault. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (Mw 7.1) in central Kyushu (Japan). Although the distribution of some 1500 earthquake-triggered landslides as a function of rupture distance is consistent with the observed Arias intensity, the landslides were more concentrated to the northeast of the southwest–northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, the median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors sufficiently explains the landslide distribution or orientation (aspect), although the landslide head scarps have an elevated hillslope inclination and MAF. We propose a new physics-based ground-motion model (GMM) that accounts for the seismic rupture effects, and we demonstrate that the low-frequency seismic radiation pattern is consistent with the overall landslide distribution. Its spatial pattern is influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies <2 Hz. This azimuth dependence implies that comparable landslide concentrations can occur at different distances from the rupture. This quantitative link between the prevalent landslide aspect and the low-frequency seismic radiation pattern can improve coseismic landslide hazard assessment.


Sign in / Sign up

Export Citation Format

Share Document