Identification of the Seismogenic Fault of the 1654 M 8.0 Tianshui Earthquake, Northeastern Tibetan Plateau

Author(s):  
Peng Chen ◽  
Wei Shi ◽  
Jianmin Hu ◽  
Bing Yan ◽  
Haifeng Lu

Abstract The 1654 M 8.0 Tianshui earthquake occurred in the triangle area bounded by the West Qinling fault (WQLF) and Lixian–Luojiabao fault (LLF) in the northeastern Tibetan plateau. Previous studies reported that the LLF is the source for this earthquake based on the historical records and the Holocene fault activities. However, topographic analyses, outcrop observations, trench excavations associated with the WQLF, together with the radiocarbon dating results reveal that (1) the most recent surface-rupturing earthquake (E1) occurred in the past 470 yr, which can only correspond to the 1654 Tianshui earthquake if the historic earthquakes record is complete. This result means that the seismogenic fault, which is responsible for the 1654 Tianshui earthquake is the WQLF, rather than the LLF as previously reported; (2) the penultimate morphogenic earthquake (E2) took place in the period of 2693–760 yr Cal B.P.; (3) the third recent large earthquake (E3) occurred in the period of 10,229–6032 yr Cal B.P. with a higher probability in this range of 9005–8596 yr Cal B.P.; and (4) in consideration of the double time span of event E3 when compared with event E2 and E1, there is a possibility that another morphogenic earthquake took place in the period of 8596–6032 yr Cal B.P., and then the fourth surface-rupturing event (E4) occurred in the period of 9005–8596 yr Cal B.P. Therefore, at least three or four Holocene slipping events have occurred upon the WQLF in the past ∼9000  yr, suggesting an average recurrence interval of large earthquakes of 2250–3000 yr. The new evidence associated with the source of the 1654 M 8.0 Tianshui earthquake and the recurrence interval of large earthquakes on the WQLF will throw light on the reassessment of seismic potential in this area.

2021 ◽  
Vol 1 (2) ◽  
pp. 75-84
Author(s):  
Charlotte Pizer ◽  
Kate Clark ◽  
Jamie Howarth ◽  
Ed Garrett ◽  
Xiaoming Wang ◽  
...  

Abstract Geological records of subduction earthquakes, essential for seismic and tsunami hazard assessment, are difficult to obtain at transitional plate boundaries, because upper-plate fault earthquake deformation can mask the subduction zone signal. Here, we examine unusual shell layers within a paleolagoon at Lake Grassmere, at the transition zone between the Hikurangi subduction zone and the Marlborough fault system. Based on biostratigraphic and sedimentological analyses, we interpret the shell layers as tsunami deposits. These are dated at 2145–1837 and 1505–1283 yr B.P., and the most likely source of these tsunamis was ruptures of the southern Hikurangi subduction interface. Identification of these two large earthquakes brings the total record of southern Hikurangi subduction earthquakes to four in the past 2000 yr. For the first time, it is possible to obtain a geologically constrained recurrence interval for the southern Hikurangi subduction zone. We calculate a recurrence interval of 500 yr (335–655 yr, 95% confidence interval) and a coefficient of variation of 0.27 (0.0–0.47, 95% confidence interval). The probability of a large subduction earthquake on the southern Hikurangi subduction zone is 26% within the next 50 yr. We find no consistent temporal relationship between subduction earthquakes and large earthquakes on upper-plate faults.


2016 ◽  
Vol 131 ◽  
pp. 157-167 ◽  
Author(s):  
Elizabeth K. Thomas ◽  
Yongsong Huang ◽  
Steven C. Clemens ◽  
Steven M. Colman ◽  
Carrie Morrill ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takeshi Nishimura

AbstractAlthough data catalog analyses have confirmed that volcanic eruptions are triggered by large earthquakes, the triggering mechanism has been under discussion for many decades. In the present study, recent earthquake and volcanic data from the past 35–55 years were analyzed, and it was demonstrated for the first time that the likelihood of new eruptions increases two to three times in the 5–10 years following large earthquakes for volcanoes where the generated static dilatational strain exceeds 0.5 µ, which may, for example, activate gas bubble growth and thereby generate a buoyant force in the magma. In contrast, the eruption likelihood does not increase for volcanoes that are subjected to strong ground motion alone, which affect the magma system and volcanic edifice. These results indicate that we can evaluate the likelihood of triggered eruptions and prepare for new eruptions when a large earthquake occurs.


Sign in / Sign up

Export Citation Format

Share Document