The 2020 Mw 6.0 Jiashi Earthquake: Coinvolvement of Thin-Skinned Thrusting and Basement Shortening in Shaping the Keping-Tage Fold-and-Thrust Belt in Southwestern Tian Shan

Author(s):  
Yuqing He ◽  
Teng Wang ◽  
Lihua Fang ◽  
Li Zhao

Abstract The Keping-tage fold-and-thrust belt in southwest Tian Shan is seismically active, yet the most well-recorded earthquakes occurred south of the mountain front. The lack of large earthquakes beneath the fold-and-thrust belt thus hinders our understanding of the orogenic process to the north. The 2020 Mw 6.0 Jiashi earthquake is an important event with surface deformation in the fold-and-thrust belt well illuminated by Interferometric Synthetic Aperture Radar, providing an opportunity to study the present-day kinematics of the thrust front through the analysis of satellite measurements of surface deformations. Here, we employ the surface deformation and relocated aftershocks to investigate the fault-slip distribution associated to this event. Further added by an analysis of Coulomb stress changes, we derive a fault model involving slips on a shallow, low-angle (∼10°) north-dipping thrust fault as well as on a left-lateral tear fault and a high-angle south-dipping reverse fault in mid-crust. Aftershocks at depth reflect the basement-involved shortening activated by a thin-skinned thrust faulting event. In addition, this earthquake uplifted the southernmost mountain front with relatively low topography, indicating the basin-ward propagation of the southwest Tian Shan.

Author(s):  
R. Alac Barut ◽  
J. Trinder ◽  
C. Rizos

On August 17<sup>th</sup> 1999, a M<sub>w</sub> 7.4 earthquake struck the city of Izmit in the north-west of Turkey. This event was one of the most devastating earthquakes of the twentieth century. The epicentre of the Izmit earthquake was on the North Anatolian Fault (NAF) which is one of the most active right-lateral strike-slip faults on earth. However, this earthquake offers an opportunity to study how strain is accommodated in an inter-segment region of a large strike slip fault. In order to determine the Izmit earthquake post-seismic effects, the authors modelled Coulomb stress changes of the aftershocks, as well as using the deformation measurement techniques of Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS). The authors have shown that InSAR and GNSS observations over a time period of three months after the earthquake combined with Coulomb Stress Change Modelling can explain the fault zone expansion, as well as the deformation of the northern region of the NAF. It was also found that there is a strong agreement between the InSAR and GNSS results for the post-seismic phases of investigation, with differences less than 2mm, and the standard deviation of the differences is less than 1mm.


2020 ◽  
Vol 100 ◽  
pp. 102560 ◽  
Author(s):  
Martín Turienzo ◽  
Natalia Sánchez ◽  
Fernando Lebinson ◽  
Florencia Peralta ◽  
Vanesa Araujo ◽  
...  

2011 ◽  
Vol 182 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Stéphane Molliex ◽  
Olivier Fabbri ◽  
Vincent Bichet ◽  
Herfried Madritsch

Abstract This study presents new constraints for Plio-Quaternary (post-2.4 Ma to present-day) anticline growth along the frontal zone of the Jura fold-and-thrust belt, in the Forêt de Chaux area, located 30 km SW of Besançon. The Forêt de Chaux area consists of a N080°E-elongated depression bordered by the Doubs and Loue rivers to the north and south respectively, and filled with Sundgau-type Pliocene alluvial deposits. The upper surface of the Pliocene deposits between the Loue and Doubs rivers is marked by a N065°E-trending ridge crossing the depression in a median position. A differential uplift along this ridge, post-dating the deposition of the gravels (2.4 Ma), is suggested by several geomorphological observations such as the opposite river migration on each side of the ridge as well as variations of drainage geometry and incision intensity. Geological and geophysical subsurface data indicate that the ridge roughly coincides with the axis of an anticline hidden beneath the Pliocene deposits. The observed uplift is presumably related to a post-2.4 Ma anticline growth. The fact that the azimuth of the hidden anticline axis is parallel to the strike of deep-seated Late Paleozoic basement faults and not to the local strike of the thin-skinned Jura structures indicates that the inferred post-Pliocene deformation could possibly be an expression of a recent thick-skinned deformation of the basement of the northern Alpine foreland. The focal depth (15 km) of the February 24th, 2004, Besançon earthquake supports the hypothesis of a basement fault reactivation.


Author(s):  
R. Alac Barut ◽  
J. Trinder ◽  
C. Rizos

On August 17<sup>th</sup> 1999, a M<sub>w</sub> 7.4 earthquake struck the city of Izmit in the north-west of Turkey. This event was one of the most devastating earthquakes of the twentieth century. The epicentre of the Izmit earthquake was on the North Anatolian Fault (NAF) which is one of the most active right-lateral strike-slip faults on earth. However, this earthquake offers an opportunity to study how strain is accommodated in an inter-segment region of a large strike slip fault. In order to determine the Izmit earthquake post-seismic effects, the authors modelled Coulomb stress changes of the aftershocks, as well as using the deformation measurement techniques of Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS). The authors have shown that InSAR and GNSS observations over a time period of three months after the earthquake combined with Coulomb Stress Change Modelling can explain the fault zone expansion, as well as the deformation of the northern region of the NAF. It was also found that there is a strong agreement between the InSAR and GNSS results for the post-seismic phases of investigation, with differences less than 2mm, and the standard deviation of the differences is less than 1mm.


EKSPLORIUM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 111
Author(s):  
Priyobudi Priyobudi ◽  
Mohamad Ramdhan

ABSTRAK. Keberadaan sesar aktif dengan pola sesar naik di daerah Plampang berhasil diungkap dari sebaran hiposenter terelokasi, hasil inversi momen tensor, dan pemodelan perubahan tegangan Coulomb. Studi ini juga berhasil mengungkap sumber gempa pada sesar aktif tersebut dengan kedalaman relatif dangkal yang bisa menjadi ancaman di Pulau Sumbawa jika magnitudo maksimumnya rilis di masa yang akan datang. Hasil relokasi hiposenter menunjukkan sebaran episenter berarah barat daya–timur laut. Hal ini didukung juga oleh hasil inversi momen tensor yang menunjukkan bidang sesar berarah barat daya–timur laut (N2240E) dengan dip cukup curam (490). Penampang seismisitas vertikal pada arah dip menunjukkan adanya pola sesar naik yang semakin landai seiring bertambahnya kedalaman. Bidang sesar yang landai menunjukkan struktur decollement pada kedalaman 10–15 km dan berangsur menjadi curam sebagai struktur splay fault pada kedalaman 0–10 km. Hal tersebut konsisten dengan hasil inversi momen tensor yang menunjukkan mekanisme pergerakan sesar naik terjadi pada kedalaman 7 km. Pemodelan perubahan tegangan Coulomb menunjukkan adanya penambahan stress di luar area bidang sesar sehingga memicu terjadinya aftershocks. Sebaran gempa susulan menunjukkan adanya bidang sesar hipotetik dengan panjang 19 km dan lebar 12 km. Sesar sebesar ini berpotensi membangkitkan gempa dengan kekuatan Mw 6,4. Gempa Sumbawa 13 Juni 2020 dengan magnitudo M 5,3 disebabkan oleh sebagian kecil aktivitas dari bidang sesar tersebut.ABSTRACT. The existence of an active fault with a reverse fault mechanism in the Plampang area is successfully delineated from the distribution of the relocated hypocenter, the moment tensor inversion, and the Coulomb stress changes. This study also reveals the source of the earthquake in the active fault with a relatively shallow depth which can be a threat on Sumbawa Island if the maximum magnitude is released in the future. Seismicity from hypocenter relocation shows the distribution of the epicenter with a southwest–northeast direction. It is also supported by the moment tensor inversion result which shows the fault plane trending southwest–northeast (N2240E) with a steep dip (490). The vertical section of seismicity in the dip direction shows that the slope of the plane has a lower angle with increasing depth. The lower angle of a fault plane shows a decollement structure at a depth of 10–15 km and gradually becomes steep as a splay fault structure at a depth of 0–10 km. It is consistent with the result of moment tensor inversion which shows the mechanism of a reverse fault that occurred at a depth of 7 km. The Coulomb stress changes show the stress increasing outside the fault plane area, which triggers aftershocks. The distribution of aftershocks shows a hypothetical fault plane of 19 km long and 12 km wide. A fault of this size has the potential to generate an earthquake with a magnitude maximum of Mw 6.4. The Sumbawa earthquake on June 13, 2020, having M 5.3 was caused by a small part of the activity from the fault.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mary Hubbard ◽  
Malay Mukul ◽  
Ananta Prasad Gajurel ◽  
Abhijit Ghosh ◽  
Vinee Srivastava ◽  
...  

The continental collision process has made a large contribution to continental growth and reconfiguration of cratons throughout Earth history. Many of the mountain belts present today are the product of continental collision such as the Appalachians, the Alps, the Cordillera, the Himalaya, the Zagros, and the Papuan Fold and Thrust Belt. Though collisional mountain belts are generally elongate and laterally continuous, close inspection reveals disruptions and variations in thrust geometry and kinematics along the strike of the range. These lateral variations typically coincide with cross structures and have been documented in thrust fault systems with a variety of geometries and kinematic interpretations. In the Himalaya, cross faults provide segment boundaries that, in some cases separate zones of differing thrust geometry and may even localize microseismicity or limit areas of active seismicity on adjacent thrust systems. By compiling data on structural segmentation along the length of the Himalayan range, we find lateral variations at all levels within the Himalaya. Along the Gish fault of the eastern Indian Himalaya, there is evidence in the foreland for changes in thrust-belt geometry across the fault. The Gish, the Ganga, and the Yamuna faults all mark boundaries of salients and recesses at the mountain front. The Benkar fault in the Greater Himalayan sequence of eastern Nepal exhibits a brittle-ductile style of deformation with fabric that crosscuts the older thrust-sense foliation. Microseismicity data from several regions in Nepal shows linear, northeast-striking clusters of epicenters sub-parallel to cross faults. The map pattern of aftershock data from the 2015 Nepal earthquakes has an abrupt northeast-trending termination on its eastern side suggesting the presence of a structure of that orientation that limited slip. The orientations of the recognized cross faults and seismic patterns also align with the extensional zones to the north on the Tibetan Plateau and the Indian basement structures to the south. Results from multiple studies are consistent with a link between cross faults and either of these structural trends to the north or south and suggest that cross faults may play a role in segmenting deformation style and seismic activity along the length of the Himalaya.


2019 ◽  
Vol 131 ◽  
pp. 101647
Author(s):  
Delong Ma ◽  
Hemin A. Koyi ◽  
Jianying Yuan ◽  
Dengfa He ◽  
Huquan Zhang ◽  
...  

2021 ◽  
pp. M57-2020-6
Author(s):  
John R. Hopper ◽  
Jon R. Ineson

AbstractThe Franklinian margin composite tectono-sedimentary element (CTSE) in North Greenland is dominated by Neoproterozoic - lowermost Devonian sedimentary strata that include early syn-rift through passive margin TSEs of mixed carbonate and siliciclastic facies. The sedimentary successions are well exposed in much of northern Greenland, but locally were strongly affected by the Ellesmerian Orogeny, resulting in a fold and thrust belt that deformed the northernmost exposures. An exposed palaeo-oilfield attests to the petroleum potential of the basin. Several formations have good source potential and several others have good reservoir properties. Palaeo-heat flow indicators show that temperatures increase to the north, where much of the basin is over-mature. Because of the remoteness of the area and the restricted locations where petroleum potential is likely to remain, the basin is not currently a target for exploration.


Sign in / Sign up

Export Citation Format

Share Document