scholarly journals Persistent westward drift of the geomagnetic field at the core–mantle boundary linked to recurrent high-latitude weak/reverse flux patches

2020 ◽  
Vol 222 (2) ◽  
pp. 1423-1432
Author(s):  
Andreas Nilsson ◽  
Neil Suttie ◽  
Monika Korte ◽  
Richard Holme ◽  
Mimi Hill

SUMMARY Observations of changes in the geomagnetic field provide unique information about processes in the outer core where the field is generated. Recent geomagnetic field reconstructions based on palaeomagnetic data show persistent westward drift at high northern latitudes at the core–mantle boundary (CMB) over the past 4000 yr, as well as intermittent occurrence of high-latitude weak or reverse flux patches. To further investigate these features, we analysed time-longitude plots of a processed version of the geomagnetic field model pfm9k.1a, filtered to remove quasi-stationary features of the field. Our results suggest that westward drift at both high northern and southern latitudes of the CMB have been a persistent feature of the field over the past 9000 yr. In the Northern Hemisphere we detect two distinct signals with drift rates of 0.09° and 0.25° yr−1 and dominant zonal wavenumbers of m = 2 and 1, respectively. Comparisons with other geomagnetic field models support these observations but also highlight the importance of sedimentary data that provide crucial information on high-latitude geomagnetic field variations. The two distinct drift signals detected in the Northern Hemisphere can largely be decomposed into two westward propagating waveforms. We show that constructive interference between these two waveforms accurately predicts both the location and timing of previously observed high-latitude weak/reverse flux patches over the past 3–4 millennia. In addition, we also show that the 1125-yr periodicity signal inferred from the waveform interference correlates positively with variations in the dipole tilt over the same time period. The two identified drift signals may partially be explained by the westward motion of high-latitude convection rolls. However, the dispersion relation might also imply that part of the drift signal could be caused by magnetic Rossby waves riding on the mean background flow.

1972 ◽  
Vol 62 (4) ◽  
pp. 1063-1071 ◽  
Author(s):  
R. D. Adams

Abstract The phases P2KP, P3KP, and P4KP are well recorded from the Novaya Zemlya nuclear explosion of October 14, 1970, with the branch AB at distances of up to 20° beyond the theoretical end point A. This extension is attributed to diffraction around the core-mantle boundary. A slowness dT/dΔ = 4.56±0.02 sec/deg is determined for the AB branch of P4KP, in excellent agreement with recent determinations of the slowness of diffracted P. This slowness implies a velocity of 13.29±0.06 km/sec at the base of the mantle, and confirms recent suggestions of a low-velocity channel above the core-mantle boundary. There is evidence that arrivals recorded before the AB branch of P2KP may lie on two branches, with different slownesses. The ratio of amplitudes of successive orders of multiple inner core reflections gives a lower bound of about 2200 for Q in the outer core.


1971 ◽  
Vol 61 (4) ◽  
pp. 1051-1059
Author(s):  
A. L. Hales ◽  
J. L. Roberts

abstract Earlier studies of the velocity distribution in the outer core have been based on the travel times of SKS.SKS arrivals can only be observed satisfactorily for arc distances at the surface greater than 85°. This lower limit of observation of SKS corresponds to an arc distance of 40.2° within the core. Thus the velocities in the outermost 250 km of the core are based upon an extrapolation. We have used observations of the difference in time of arrival of SKKS and SKS to obtain core travel times extending the range of observation down to a Δ within the core of about 14°. The velocity distribution thus found is significantly lower than those of Jeffreys (Bullen, 1963) and Randall (in press) near the core mantle boundary.


2020 ◽  
Author(s):  
Mioara Mandea ◽  
Veronique Dehant ◽  
Anny Cazenave

<div> <p>To understand the processes involved in the deep interior of the Earth and explaining its evolution, in particular the dynamics of the Earth’s fluid iron-rich outer core, only indirect satellite and ground observations are available. They each provide invaluable information about the core flow but are incomplete on their own:</p> <p>-        The time dependent magnetic field, originating mainly within the core, can be used to infer the motions of the fluid at the top of the core on decadal and subdecadal time scales.</p> <p>-        The time dependent gravity field variations that reflect changes in the mass distribution within the Earth and at its surface occur on a broad range of time scales. Decadal and interannual variations include the signature of the flow inside the core, though they are largely dominated by surface contributions related to the global water cycle and climate-driven land ice loss.</p> <p>-        Earth rotation changes (or variations in the length of the day) also occur on these time scales, and are largely related to the core fluid motions through exchange of angular momentum between the core and the mantle at the core-mantle boundary.</p> <p>Here, we present the main activities proposed in the frame of the GRACEFUL ERC project, which aims to combine information about the core deduced from the gravity field, from the magnetic field and from the Earth rotation in synergy, in order to examine in unprecedented depth the dynamical processes occurring inside the core and at the core-mantle boundary.</p> </div>


2020 ◽  
Author(s):  
Chi-Hua Chung ◽  
Benjamin Fong Chao

<p>We examine the secular variations of global geomagnetic field on long temporal scales using the IGRF model given in Gauss coefficients for 1900 - 2020. We apply the Empirical Orthogonal Function (EOF) analysis to the geomagnetic field truncated at degree 6 and downward continue it to the core-mantle boundary (CMB) under the assumption of an insulating mantle. The first three EOF modes show the periods around 120, 75 and 60 years with corresponding spatial structures. These oscillational modes potentially support the manifestation of magnetic, Archimedes and Coriolis (MAC) waves in the stably stratified layer near CMB (Buffett, 2016). We also model and decompose the geomagnetic field to standing and drifting components according to trajectories of the Gauss coefficients similarly to Yukutake (2015). We then use the Complex EOF (CEOF) analysis on the drifting field. The results indicate the presence of the westward drift phenomenon but only weakly given the fact that the westward drift has only completed a fraction of a cycle during this time.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4186
Author(s):  
Mioara Mandea ◽  
Véronique Dehant ◽  
Anny Cazenave

While the main causes of the temporal gravity variations observed by the Gravity Recovery and Climate Experiment (GRACE) space mission result from water mass redistributions occurring at the surface of the Earth in response to climatic and anthropogenic forces (e.g., changes in land hydrology, ocean mass, and mass of glaciers and ice sheets), solid Earth’s mass redistributions were also recorded by these observations. This is the case, in particular, for the glacial isostatic adjustment (GIA) or the viscous response of the mantle to the last deglaciation. However, it has only recently been shown that the gravity data also contain the signature of flows inside the outer core and their effects on the core–mantle boundary (CMB). Detecting deep Earth’s processes in GRACE observations offers an exciting opportunity to provide additional insight into the dynamics of the core–mantle interface. Here, we present one aspect of the GRACEFUL (GRavimetry, mAgnetism and CorE Flow) project, i.e., the possibility to use gravity field data for understanding the dynamic processes inside the fluid core and core–mantle boundary of the Earth, beside that offered by the geomagnetic field variations.


Sign in / Sign up

Export Citation Format

Share Document