Effect of boundaries on wave propagation in media with microstructure: II. Surface waves in a half-space

1974 ◽  
Vol 64 (2) ◽  
pp. 387-392
Author(s):  
M. Farshad ◽  
G. Ahmadi

abstract The surface-wave propagation in a half-space according to couple-stress theory is studied herein. Dispersion curves as well as displacement variations with the depth coordinate are obtained for a range of material parameters. Comparison is made with the classical elasticity predictions upon which certain conclusions are reached.

Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Yanqi Wu ◽  
Jianwei Ma

In elastostatics, the scale effect is a phenomenon in which the elastic parameters of a medium vary with specimen size when the specimen is sufficiently small. Linear elasticity cannot explain the scale effect because it assumes that the medium is a continuum and does not consider microscopic rotational interactions within the medium. In elastodynamics, wave propagation equations are usually based on linear elasticity. Thus, nonlinear elasticity must be introduced to study the scale effect on wave propagation. In this work, we introduce one of the generalized continuum theories—couple stress theory—into solid earth geophysics to build a more practical model of underground medium. The first-order velocity-stress wave equation is derived to simulate the propagation of Rayleigh waves. Body and Rayleigh waves are compared using elastic theory and couple stress theory in homogeneous half- space and layered space. The results show that couple stress causes the dispersion of surface waves and shear waves even in homogeneous half-space. The effect is enhanced by increasing the source frequency and characteristic length, despite its insufficiently clear physical meaning. Rayleigh waves are more sensitive to couple stress effect than body waves. Based on the phase-shifting method, it was determined that Rayleigh waves exhibit different dispersion characteristics in couple stress theory than in conventional elastic theory. For the fundamental mode, the dispersion curves tend to move to a lower frequency with an increase in characteristic length l. For the higher modes, the dispersion curves energy is stronger with a greater characteristic length l.


2011 ◽  
Vol 03 (04) ◽  
pp. 633-665 ◽  
Author(s):  
P. SAXENA ◽  
R. W. OGDEN

Rayleigh-type surface waves propagating in an incompressible isotropic half-space of nonconducting magnetoelastic material are studied for a half-space subjected to a finite pure homogeneous strain and a uniform magnetic field. First, the equations and boundary conditions governing linearized incremental motions superimposed on an initial motion and underlying electromagnetic field are derived and then specialized to the quasimagnetostatic approximation. The magnetoelastic material properties are characterized in terms of a "total" isotropic energy density function that depends on both the deformation and a Lagrangian measure of the magnetic induction. The problem of surface wave propagation is then analyzed for different directions of the initial magnetic field and for a simple constitutive model of a magnetoelastic material in order to evaluate the combined effect of the finite deformation and magnetic field on the surface wave speed. It is found that a magnetic field in the considered (sagittal) plane in general destabilizes the material compared with the situation in the absence of a magnetic field, and a magnetic field applied in the direction of wave propagation is more destabilizing than that applied perpendicular to it.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


1958 ◽  
Vol 4 (6) ◽  
pp. 607-614 ◽  
Author(s):  
Joseph B. Keller

Gravity waves occur on the surface of a liquid such as water, and the manner in which they propagate depends upon its depth. Although this dependence is described in principle by the equations of the ‘exact linear theory’ of surface waves, these equations have not been solved except in some special cases. Therefore, oceanographers have been unable to use the theory to describe surface wave propagation in water whose depth varies in a general way. Instead they have employed a simplified geometrical optics theory for this purpose (see, for example, Sverdrup & Munk (1944)). It has been used very successfully, and consequently various attempts, only partially successful, have been made to deduce it from the exact linear theory. It is the purpose of this article to present a derivation which appears to be satisfactory and which also yields corrections to the geometrical optics theory.


Sign in / Sign up

Export Citation Format

Share Document