Advanced CSiC Composites for High-temperature Nuclear Heat Transport with Helium, Molten Salts, and Sulphur-iodine Thermochemical Hydrogen Process Fluids

Author(s):  
Charles Forsberg ◽  
Per F. Peterson ◽  
P. S. Pickard
Author(s):  
Xiaoqiao Li ◽  
Linming Zhou ◽  
Han Wang ◽  
Dechao Meng ◽  
Guannan Qian ◽  
...  

Crystalline materials are routinely produced via high-temperature synthesis and show size-dependent properties; however, a rational approach to regulating their crystal growth has not been established. Here we show that dopants...


CORROSION ◽  
2001 ◽  
Vol 57 (6) ◽  
pp. 489-496 ◽  
Author(s):  
M. Amaya ◽  
J. Porcayo-Calderon ◽  
L. Martinez

Abstract The performance of Fe-Si coatings and an iron aluminide (FeAl) intermetallic alloy (FeAl40at%+0.1at%B+10vol%Al2O3) in molten salts containing vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) is reported. Corrosion and fouling by ash deposits containing V2O5 and Na2SO4 are typical corrosion problems in fuel oil-fired electric power units. High-temperature corrosion tests were performed using both electrochemical polarization and immersion techniques. The temperature interval of this study was 600°C to 900°C, and the molten salts were 80wt%V2O5-20wt%Na2SO4. Curves of corrosion current density vs temperature obtained by the potentiodynamic studies are reported, as well as the weight loss vs temperature curves from molten salt immersion tests. Both Fe-Si coatings and FeAl40at%+0.1at%B+10vol%Al2O3 showed good behavior against molten salt corrosion. The final results show the potential of these coatings and alloys to solve the high-temperature corrosion in fuel oil-fired electric power units.


Author(s):  
Ali Afrazeh ◽  
Hiwa Khaledi ◽  
Mohammad Bagher Ghofrani

A gas turbine in combination with a nuclear heat source has been subject of study for some years. This paper describes the advantages of a gas turbine combined with an inherently safe and well-proven nuclear heat source. The design of the power conversion system is based on a regenerative, non-intercooled, closed, direct Brayton cycle with high temperature gas-cooled reactor (HTGR), as heat source and helium gas as the working fluid. The plant produces electricity and hot water for district heating (DH). Variation of specific heat, enthalpy and entropy of working fluid with pressure and temperature are included in this model. Advanced blade cooling technology is used in order to allow for a high turbine inlet temperature. The paper starts with an overview of the main characteristics of the nuclear heat source, Then presents a study to determine the specifications of a closed-cycle gas turbine for the HTGR installation. Attention is given to the way such a closed-cycle gas turbine can be modeled. Subsequently the sensitivity of the efficiency to several design choices is investigated. This model is developed in Fortran.


2015 ◽  
Vol 123 (1437) ◽  
pp. 355-358 ◽  
Author(s):  
Sun Woog KIM ◽  
Kazuyoshi UEMATSU ◽  
Kenji TODA ◽  
Mineo SATO

Sign in / Sign up

Export Citation Format

Share Document