Exploring interactions between the parasite plasma membrane and the parasite vacuolar membrane of Plasmodium falciparum

2021 ◽  
Author(s):  
Sezin K. Nicklas
1998 ◽  
Vol 111 (13) ◽  
pp. 1831-1839 ◽  
Author(s):  
J.C. Pinder ◽  
R.E. Fowler ◽  
A.R. Dluzewski ◽  
L.H. Bannister ◽  
F.M. Lavin ◽  
...  

The genome of the malaria parasite, Plasmodium falciparum, contains a myosin gene sequence, which bears a close homology to one of the myosin genes found in another apicomplexan parasite, Toxoplasma gondii. A polyclonal antibody was generated against an expressed polypeptide of molecular mass 27,000, based on part of the deduced sequence of this myosin. The antibody reacted with the cognate antigen and with a component of the total parasite protein on immunoblots, but not with vertebrate striated or smooth muscle myosins. It did, however, recognise two components in the cellular protein of Toxoplasma gondii. The antibody was used to investigate stage-specificity of expression of the myosin (here designated Pf-myo1) in P. falciparum. The results showed that the protein is synthesised in mature schizonts and is present in merozoites, but vanishes after the parasite enters the red cell. Pf-myo1 was found to be largely, though not entirely, associated with the particulate parasite cell fraction and is thus presumably mainly membrane bound. It was not solubilised by media that would be expected to dissociate actomyosin or myosin filaments, or by non-ionic detergent. Immunofluorescence revealed that in the merozoite and mature schizont Pf-myo1 is predominantly located around the periphery of the cell. Immuno-gold electron microscopy also showed the presence of the myosin around almost the entire parasite periphery, and especially in the region surrounding the apical prominence. Labelling was concentrated under the plasma membrane but was not seen in the apical prominence itself. This suggests that Pf-myo1 is associated with the plasma membrane or with the outer membrane of the subplasmalemmal cisterna, which forms a lining to the plasma membrane, with a gap at the apical prominence. The results lead to a conjectural model of the invasion mechanism.


1991 ◽  
Vol 44 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Jos F. van Pelt ◽  
Jos Kleuskens ◽  
Michael R. Hollingdale ◽  
Jan Peter Verhave ◽  
Thivi Ponnudurai ◽  
...  

1993 ◽  
Vol 104 (4) ◽  
pp. 1129-1136 ◽  
Author(s):  
M. Kimura ◽  
Y. Yamaguchi ◽  
S. Takada ◽  
K. Tanabe

A Ca(2+)-ATPase gene was cloned from the genomic libraries of Plasmodium falciparum. From the deduced amino acid sequence of the gene, a 139 kDa protein with a total of 1228 amino acids was predicted. Sequence of a partial cDNA clone of the gene identified two introns near the 3′-end at the regions identical to the regions assumed for the Ca(2+)-ATPase gene of P. yoelii, a rodent malaria species. As compared with a variety of Ca(2+)-ATPases, the P. falciparum Ca(2+)-ATPase had the highest amino acid sequence homology (78%) to the P. yoelii Ca(2+)-ATPase, moderate homology (45-50%) to vertebrate sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCAs), and lowest homology (20%) to a plasma membrane Ca(2+)-ATPase. The P. falciparum protein conserved sequences and residues that are important for the function and/or structure of the organellar type Ca(2+)-ATPase, such as high affinity Ca(2+)-binding sites, fluorescein isothiocyanate (FITC)-binding regions, and the phosphorylation site, but the protein did not contain calmodulin-binding regions that occur in the plasma membrane type Ca(2+)-ATPase. Thus we concluded the cloned gene was the organellar type Ca(2+)-ATPase of P. falciparum. In a region between the phosphorylation site and FITC-binding region, the P. falciparum protein was about 200 residues longer than the rabbit SERCA and lacked a sequence that binds to phospholamban, a protein that regulates the activity of the rabbit SERCA.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3420-3426 ◽  
Author(s):  
Theodore F. Taraschi ◽  
Megan O'Donnell ◽  
Sandra Martinez ◽  
Timothy Schneider ◽  
Darin Trelka ◽  
...  

AbstractThe asexual maturation of Plasmodium falciparum is accompanied by the transport of parasite-encoded proteins to the erythrocyte plasma membrane. Activation of G proteins by treatment with aluminum fluoride produced an accumulation within the erythrocyte cytosol of vesicles coated with Plasmodium homologues of COPII and N-ethylmaleimide-sensitive factor, proteins involved in intracellular transport between the Golgi apparatus and the endoplasmic reticulum. These vesicles contain malarial proteins that appear on the erythrocyte plasma membrane, as well as actin and myosin. It is proposed that the parasite adapted a process well established for intracellular transport to mediate the extracellular movement of its proteins through the erythrocyte cytosol to the surface membrane.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1476
Author(s):  
Katarina Vaskovicova ◽  
Petra Vesela ◽  
Jakub Zahumensky ◽  
Dagmar Folkova ◽  
Maria Balazova ◽  
...  

Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.


1988 ◽  
Vol 106 (5) ◽  
pp. 1507-1513 ◽  
Author(s):  
T Y Sam-Yellowe ◽  
H Shio ◽  
M E Perkins

The rhoptry is an organelle of the malarial merozoite which has been suggested to play a role in parasite invasion of its host cell, the erythrocyte. A monoclonal antibody selected for reactivity with this organelle identifies a parasite synthesized protein of 110 kD. From biosynthetic labeling experiments it was demonstrated that the protein is synthesized midway through the erythrocytic cycle (the trophozoite stage) but immunofluorescence indicates the protein is not localized in the organelle until the final stage (segmenter stage) of intraerythrocytic development. Immunoelectron microscopy shows that the protein is localized in the matrix of the rhoptry organelle and on membranous whorls secreted from the merozoite. mAb recognition of the protein is dithiothreitol (DTT) labile, indicating that the conformation of the epitope is dependent on a disulfide linkage. During erythrocyte reinvasion by the extracellular merozoite, immunofluorescence shows the rhoptry protein discharging from the merozoite and spreading around the surface of the erythrocyte. The protein is located in the plasma membrane of the newly invaded erythrocyte. These studies suggest that the 110-kD rhoptry protein is inserted into the membrane of the host erythrocyte during merozoite invasion.


2009 ◽  
Vol 8 (12) ◽  
pp. 1845-1855 ◽  
Author(s):  
Barry J. Bowman ◽  
Marija Draskovic ◽  
Michael Freitag ◽  
Emma Jean Bowman

ABSTRACT We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca2+-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca2+-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca2+/H+ exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 μm from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.


Sign in / Sign up

Export Citation Format

Share Document