scholarly journals Performance Evaluation of Multiple Helical Tubes as a Receiver for Solar Parabolic Trough Collector

2019 ◽  
Vol 6 (2) ◽  
pp. 115-122
Author(s):  
Swapnil N. Lotake ◽  
M. M. Wagh

Solar parabolic trough collector consists of a parabolic reflector with a central receiver at a focal point through which heat transfer fluid is passed. Parabolic trough collector is used mostly in solar thermal power plants for generating electricity. This paper describes the experimental results of two straight tubes wrapped over each other to form a helically shaped receiver. The receiver was tested with aluminium material with and without black paint over it. Also, the helical tube receiver was tested with a glass cover over it, at two different mass flow rates and, with and without manual tracking. The tested instantaneous thermal efficiency ranges from 31.26% to 45.28% and the overall thermal efficiency ranges from 14.9% to 31.41% during the experimental period. The instantaneous thermal efficiency increased by an average of 1.32 times for unpainted receiver and 1.36 times for black painted receiver with the increase in mass flow rate. By tracking the parabolic collector according to sun’s position, there is an average increase in instantaneous thermal efficiency by 1.1 times for unpainted receiver and 1.04 times for black painted receiver. The paper further reveals that the use of multiple helical tubes as a receiver for parabolic trough collector increases the overall efficiency of the collector in a substantial manner.

2020 ◽  
Vol 7 (1) ◽  
pp. 39-46
Author(s):  
Swapnil N. Lotake ◽  
M. M. Wagh

Solar parabolic trough collector consists of a parabolic reflector with a central receiver at a focal point through which heat transfer fluid is passed. Parabolic trough collector is used mostly in solar thermal power plants for generating electricity. This paper describes the experimental results of two straight tubes wrapped over each other to form a helically shaped receiver. The receiver was tested with aluminium material with and without black paint over it. Also, the helical tube receiver was tested with a glass cover over it, at two different mass flow rates and, with and without manual tracking. The tested instantaneous thermal efficiency ranges from 31.26% to 45.28% and the overall thermal efficiency ranges from 14.9% to 31.41% during the experimental period. The instantaneous thermal efficiency increased by an average of 1.32 times for unpainted receiver and 1.36 times for black painted receiver with the increase in mass flow rate. By tracking the parabolic collector according to sun’s position, there is an average increase in instantaneous thermal efficiency by 1.1 times for unpainted receiver and 1.04 times for black painted receiver. The paper further reveals that the use of multiple helical tubes as a receiver for parabolic trough collector increases the overall efficiency of the collector in a substantial manner.


2021 ◽  
Vol 10 (4) ◽  
pp. 875-889
Author(s):  
Ashutosh Shirole ◽  
Mahesh Wagh ◽  
Vivek Kulkarni

The objective of this paper is to investigate the theoretical performance of Parabolic Trough Collector (PTC) using various nanofluids. The theoretical performances are calculated for Al2O3, graphite, magnetite, SWCNH, CuO, SiO2, MWCNT, TiO2, Fe2O3, and ZnO in water nanofluids. The heat transfer equations, thermodynamic properties of nanofluid and pumping power are utilised for the development of novel thermal model.  The theoretical thermal efficiency of the PTC is calculated, and the economic viability of the technology is predicted for a range of nanofluid concentration. The results showed that the thermal conductivity increases with the concentration of nanoparticles in the base fluid. Magnetite nanofluid showed the highest thermal efficiency, followed by CuO, MWCNT, ZnO, SWCNH, TiO2, Fe2O3, Al2O3, graphite, and SiO2, respectively. The study reveals that MWCNT at 0.4% concentration is the best-suited nanofluid considering thermal gain and pumping power. Most of the nanofluids achieved optimum efficiency at 0.4% concentration. The influence of mass flow rate on thermal efficiency is evaluated. When the mass flow rate increased from 70 Kg/hr to 90Kg/hr, a 10%-20% efficiency increase is observed. Dispersing nanofluids reduces the levelized cost of energy of large-scale power plants. These findings add to the knowledge of the scientific community aimed explicitly at solar thermal energy technology. The report can also be used as a base to pursue solar thermal projects on an economic basis.


Author(s):  
A. Giostri ◽  
M. Binotti ◽  
P. Silva ◽  
E. Macchi ◽  
G. Manzolini

Parabolic trough can be considered the state of the art for solar thermal power plants thanks to the almost 30 years experience gained in SEGS and, recently, Nevada Solar One plants in US and Andasol plants in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, since several years research activity has been trying to develop new solutions with the aim of cost reduction. This work compares commercial Fresnel technology with conventional parabolic trough plant based on synthetic oil as heat transfer fluid at nominal conditions and evaluates yearly average performances. In both technologies, no thermal storage system is considered. In addition, for Fresnel, a Direct Steam Generation (DSG) case is investigated. Performances are calculated by a commercial code, Thermoflex®, with dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology have an optical efficiency of 67% which is lower than 75% of parabolic trough. Calculated net electric efficiency is about 19.25%, while parabolic trough technology achieves 23.6%. In off-design conditions, the gap between Fresnel and parabolic trough increases because the former is significantly affected by high radiation incident angles. The calculated sun-to-electric annual average efficiency for Fresnel plant is 10.2%, consequence of the average optical efficiency of 38.8%, while parabolic trough achieve an overall efficiency of 16%, with an optical one of 52.7%. An additional case with Fresnel collector and synthetic oil outlines differences among investigated cases. Finally, because part of performance difference between PT and Fresnel is simple due to different definitions, additional indexes are introduced in order to make a consistent comparison.


2021 ◽  
Vol 321 ◽  
pp. 02016
Author(s):  
Belkacem Bouali ◽  
Hanane-Maria Regue

This paper presents an analysis of the performance of a parabolic trough collector (PTC) according to some key operating parameters. The effects of the secondary reflector, the length and thickness of the absorber tube (receiver tube) and the flow rate of the heat transfer fluid (HTF) are investigated. The main objective is to determine an optimal operation, which improves the performance of a traditional PTC. The target variables are the temperature at the outlet of the tube, the amount of energy collected by the HTF and the efficiency of the system. The solar flux data concern the city of LAGHOUAT located in the south of Algeria. Four days in different seasons are considered. The optical analysis of the system is performed by using the open source SolTrace code. The output of this analysis is used as a boundary condition for the CFD solver. The conjugate heat transfer and the fluid flow through the absorber tube are simulated by using ANSYS-CFX solver. Water is considered as heat transfer fluids. The obtained results show that the use of a curved secondary reflector significantly improves the performance of the traditional PTC. As the thickness of the tube increases, the heat storage in the material increases, which increases the temperature at the exit of the tube and therefore the efficiency of the system. However, the length of the tube depends on the mass flow of the HTF and vice versa. To keep the efficiency constant by choosing another length, it is necessary to choose a mass flow rate proportional to the flow rate corresponding to the initial length.


Author(s):  
Krishna Mounica ◽  
Y.V. Hanumantha Rao ◽  
Vinay Atgur ◽  
G. Manavendra ◽  
B. Srinivasa Rao

In this paper the use of Syltherm-800 and Therminol-55 thermal oils in parabolic trough collector (PTC) is investigated with inlet temperatures of 375.35 K, 424.15 K, 470.65 K and 523.85 K and for mass flow rates of 4, 4.5 and 5 kg/sec. Analysis has been carried out using a thermal model and validated using the simulation results. Therminol-55 gives better heat transfer coefficient compared to Syltherm-800. Since Therminol-55 has higher specific heat and viscosity when compared to Syltherm-800, the use of Syltherm-800 as a heat transfer fluid in PTC is preferred. Better results are observed for temperature of 375.35 K and mass flow rate of 4 kg/sec.


2021 ◽  
Vol 1204 (1) ◽  
pp. 012005
Author(s):  
Intissar Achouri ◽  
Mouhamed Elbar Soudani ◽  
Tlili Salah

Abstract Concentrated solar power plants (CSP) contribute to global production (at present) with a capacity of 400 MW, and by 2020 they will reach approximately 20 GW, then nearly 800 GW by 2050, This will prevent the emission of 32 million tons of CO2 annually in 2020, and rise to 1.2 billion tons in 2050, according to the International Greenpeace “Solar Thermal Electricity” 2016 report. Among all the concentrated solar power (CSP) technology available to date, Parabolic Trough Collector (PTC) is the most promising, cost-effective, and efficient solution to generating electrical power, as PTC plants contribute in terms of global production capacity by 73.58% of the overall capacity of concentrated solar power plants (CSP). PTC stations in the production of electricity depend on the generation of hot and pressurized steam that rotates the turbines and to increase the effectiveness of PTC in the production of steam, we use in this study nanofluids by adding copper nanomaterials in different proportions to improve the Thermal efficiency of PTC. We also studied the effect of the width of the PTC slot on the fluid temperature. And from it on the amount of steam produced. The results of the study showed that the Thermal efficiency increases with the increase in the ratio of copper nanomaterials in the water, as the temperature of outlet water reaches 98°C, for the ratio of nanomaterials, 20%, in order to water flow 0.01 Kg/s and display the aperture 3.5 m.


Sign in / Sign up

Export Citation Format

Share Document