scholarly journals Heavy Metal Content in Water of Starzyc Lake (North-West Poland)

Author(s):  
Piotr Daniszewski ◽  
Ryszard Konieczny

The present research work deals with the quantification of toxic heavy metals in the water samples collected from Lake of Starzyc (North-West Poland). While the annual average concentration of Cd was calculated as 0.30 ppm in 2008 of the year and 0.21 ppm in 2009 of the year. The values obtained were found to be below the permissible limit of 2.0 ppm set for inland surface water. While the annual average concentration of Cr was calculated as 1,73 ppm in 2008 of the year and 1.67 ppm in 2009 of the year. Which was very much above the permissible limit of 0.1 ppm set for inland surface water. The observed annual average concentration of Cu in the water was 0.03 ppm in 2008 of the year and 0.06 ppm in 2009 of the year, which was below the permissible limit of 3.0 ppm set for inland surface water. While the annual average concentration of Hg was calculated as 0.02 ppm in 2008 of the year and 0.03 ppm in 2009 of the year, which was very much above the maximum limit of 0.01 ppm set for inland surface water. The annual average concentration of Ni in the water samples was observed to be 1.80 ppm in 2008 of the year and 2.07 ppm in 2009 of the year, which is close to the limit of 3.0 ppm set for inland surface water. The annual average concentration of Pb in the water samples was observed to be 0.08 ppm in 2008 of the year and 0.07 ppm in 2009 of the year, which is above the permissible limit of 0.1 ppm set for inland surface water. The results of the present investigation indicate that the annual average concentration of Zn in water samples was 3.52 ppm in 2008 of the year and 3.18 ppm in 2009 of the year, which is above the permissible limit of 5.0 ppm set for inland surface water.

Author(s):  
Piotr Daniszewski ◽  
Ryszard Konieczny

The present research work deals with the quantification of toxic heavy metals in the water samples collected from Lake of Resko (North-West Poland). While the annual average concentration of Cadmium was calculated as 0.34 ppm in 2008 of the year and 0.28 ppm in 2009 of the year. The values obtained were found to be below the permissible limit of 2.0 ppm set for inland surface water. While the annual average concentration of Chromium was calculated as 1,75 ppm in 2008 of the year and 1.97 ppm in 2009 of the year. Which was very much above the permissible limit of 0.1 ppm set for inland surface water. The observed annual average concentration of Copper in the water was 0.05 ppm in 2008 of the year and 0.06 ppm in 2009 of the year, which was below the permissible limit of 3.0 ppm set for inland surface water. While the annual average concentration of Mercury was calculated as 0.03 ppm in 2008 of the year and 0.04 ppm in 2009 of the year, which was very much above the maximum limit of 0.01 ppm set for inland surface water. The annual average concentration of Nickel in the water samples was observed to be 2.07 ppm in 2008 of the year and 2.09 ppm in 2009 of the year, which is close to the limit of 3.0 ppm set for inland surface water. The annual average concentration of Pb in the water samples was observed to be 0.07 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which is above the permissible limit of 0.1 ppm set for inland surface water. The results of the present investigation indicate that the annual average concentration of Zn in water samples was 3.02 ppm in 2008 of the year and 2.74 ppm in 2009 of the year, which is above the permissible limit of 5.0 ppm set for inland surface water.


Author(s):  
Piotr Daniszewski ◽  
Ryszard Konieczny

The present research work deals with the quantification of toxic heavy metals in the water samples collected from Lake of Miedwie (North-West Poland). While the annual average concentration of Cadmium was calculated as 0.45 ppm in 2008 of the year and 0.29 ppm in 2009 of the year. The values obtained were found to be below the permissible limit of 2.0 ppm set for inland surface water. While the annual average concentration of Chromium was calculated as 2.78 ppm in 2008 of the year and 2.50 ppm in 2009 of the year. Which was very much above the permissible limit of 0.1 ppm set for inland surface water. The observed annual average concentration of Copper in the water was 0.06 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which was below the permissible limit of 3.0 ppm set for inland surface water. While the annual average concentration of Mercury was calculated as 0.04 ppm in 2008 of the year and 0.04 ppm in 2009 of the year, which was very much above the maximum limit of 0.01 ppm set for inland surface water. The annual average concentration of Nickel in the water samples was observed to be 2.19 ppm in 2008 of the year and 2.42 ppm in 2009 of the year, which is close to the limit of 3.0 ppm set for inland surface water. The annual average concentration of Lead in the water samples was observed to be 0.06 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which is above the permissible limit of 0.1 ppm set for inland surface water. The results of the present investigation indicate that the annual average concentration of Zinc in water samples was 3.25 ppm in 2008 of the year and 2.95 ppm in 2009 of the year, which is above the permissible limit of 5.0 ppm set for inland surface water.


Author(s):  
Piotr Daniszewski

The present research work deals with the quantification of toxic heavy metals in the water samples collected from sea water in Międzyzdroje. While the annual average concentration of Cadmium was calculated as 0.44 ppm in 2008 of the year and 0.46 ppm in 2009 of the year. The values obtained were found to be below the permissible limit of 2.0 ppm set for inland surface water. While the annual average concentration of Chromium was calculated as 2.67 ppm in 2008 of the year and 2.64 ppm in 2009 of the year. Which was very much above the permissible limit of 0.1 ppm set for inland surface water. The observed annual average concentration of Copper in the water was 0.08 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which was below the permissible limit of 3.0 ppm set for inland surface water. While the annual average concentration of Mercury was calculated as 0.05 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which was very much above the maximum limit of 0.01 ppm set for inland surface water. The annual average concentration of Nickel in the water samples was observed to be 2.47 ppm in 2008 of the year and 2.70 ppm in 2009 of the year, which is close to the limit of 3.0 ppm set for inland surface water. The annual average concentration of Lead in the water samples was observed to be 0.06 ppm in 2008 of the year and 0.05 ppm in 2009 of the year, which is above the permissible limit of 0.1 ppm set for inland surface water. The results of the present investigation indicate that the annual average concentration of Zinc in water samples was 3.45 ppm in 2008 of the year and 3.73 ppm in 2009 of the year, which is above the permissible limit of 5.0 ppm set for inland surface water.


2014 ◽  
Vol 15 ◽  
pp. 69-78
Author(s):  
Pravin U. Singare ◽  
M.V.A. Ansari ◽  
N.N. Dixit

The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the level of toxic heavy metals in the sediments of Mahul Creek near Mumbai. The annual average concentration of heavy metals like Cr, Zn, Cu, Ni, Pb, Cd, As and Hg was found to be 277.5, 121.7, 100.3, 63.8, 21.5, 14.6, 10.4 and 4.9 ppm respectively. It is feared that this heavy metals accumulated in the creek sediments may enter the water thereby creating threat to the biological life of an aquatic ecosystem. The results of present study indicates that the existing situation if mishandled can cause irreparable ecological harm in the long term well masked by short term economic prosperity due to extensive industrial growth


2014 ◽  
Vol 15 ◽  
pp. 79-88
Author(s):  
Pravin U. Singare ◽  
M.V.A. Ansari ◽  
N.N. Dixit

The present study was performed for the period of one year from January 2013 to December 2013 in order to understand the level of toxic heavy metals in the water of Mahul Creek near Mumbai. It was observed that the annual average concentration of heavy metals like Cd, As, Hg, Cr, Pb, Cu, Ni and Zn, was found to be 0.003, 0.004, 0.0009, 0.012, 0.015, 0.019, 0.04 and 0.23 ppm respectively. The results suggest that there is a need to have such scientific monitoring for longer time period in order to understand the trend in level of these toxic heavy metals discharged in to the creek water. It is feared that the existing problem if ignored may increase the level of this heavy metals in creek water thereby creating threat to the biological life of an aquatic ecosystem. From the results of the present investigation it seems that the time has come to move towards ecosystem specific discharge standards to maintain the health and productivity of natural resources on which the majority of Indians are dependent.


Author(s):  
P.U. Singare ◽  
M.S. Talpade ◽  
D.V. Dagli ◽  
V.G. Bhawe

The present research work deals with the quantification of toxic heavy metals in the water samples collected from Lake of the Bhavan’s College campus of Andheri, Mumbai. The results of the present investigation indicates that yearly average concentration of toxic heavy metals like Pb, Zn, Cr, Fe and Hg was 0.16, 5.56, 2.09, 5.19 and 0.02 ppm respectively which were very much above their permissible limits set for inland surface water, while the yearly average concentration of Ni was found to be 2.76 ppm which was close to the maximum limit of 3.0 ppm. The results of the present investigation points out the need to implement common objectives, compatible policies and programs for improvement in treatment facilities for the treatment of discharged sewage and laboratory effluents.


Author(s):  
P.U. Singare ◽  
S.E.L. Ferns ◽  
E.R. Agharia

The present study was performed for the period of one year from June 2012 to May 2013 in order to understand the level of toxic heavy metals in the sediments of Mahim Creek near Mumbai. The annual average concentration of heavy metals like Pb, Cd, Cr, Zn, Cu, Ni and Hg was found to be 9.88, 2.33, 1.41, 33.31, 22.07, 32.21 and 32.06 ppm respectively. It is feared that this heavy metals accumulated in the creek sediments might affect the benthic macro invertebrates whose metabolic activities contribute to aquatic productivity. The results of present study indicates that the existing situation if mishandled can cause toxic effect on sediment dwelling organisms and fish, resulting in decrease survival, reduced growth, or impaired reproduction and lowered species diversity.


1980 ◽  
Vol 7 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Yao Zhi-Qi

Monitoring and evaluation of air quality in urban and industrial areas are essential for air quality management. For evaluating the composite air-quality in the concomitant presence of several pollutants in the atmosphere, many air quality indices have been developed. This paper presents two indices, the ‘composite air-quality index (I1)’ and ‘the standard-exceeding index of air pollution (I2)’ together with their respective sub-indices, for the pollutants monitored and for use in combination.The first index, I1, is based on the annual average concentration measured in a year for each pollutant; it measures the overall composite air-quality. By relating the annual average concentration (Ci) of each pollutant to its hygienic standard (Si), as many (Ci/Si) values as the number of pollutant parameters monitored are found, whereupon I1 is computed as the geometric mean of the maximum and average of all (Ci/Si) values. A greater value of I1 means worse composite air-quality. It is simpler to compute than those more sophisticated ones in the literature, and holds the unique characteristic of considering, and yet not overemphasizing as formula (3) does (Nemerow, 1974), the maximum (Ci/Si) value.


2017 ◽  
Author(s):  
Christopher S. Malley ◽  
Erika von Schneidemesser ◽  
Sarah Moller ◽  
Christine F. Braban ◽  
W. Kevin Hicks ◽  
...  

Abstract. Exposure to nitrogen dioxide (NO2) is associated with negative human health effects, both for short-term peak concentrations and from long-term exposure to a wider range of NO2 concentrations. For the latter, the European Union has established an air quality limit value of 40 µg m−3 as an annual average. However, factors such as proximity and strength of local emissions, atmospheric chemistry and meteorological conditions means that there is substantial variation in the hourly NO2 concentrations contributing to an annual average concentration. The aim of this analysis was to quantify the nature of this variation at thousands of monitoring sites across Europe through the calculation of a standard set of chemical climatology statistics. Specifically, at each monitoring site that satisfied data capture criteria for inclusion in this analysis, annual NO2 concentrations, as well as the percentage contribution from each month, hour of the day, and hourly NO2 concentrations divided into 5 µg m−3 bins were calculated. Across Europe, 2010–2014 average annual NO2 concentrations (NO2AA) exceeded the annual NO2 limit value at 8 % of > 2500 monitoring sites. The application of this chemical climatology approach showed that sites with distinct monthly, hour of day, and hourly NO2 concentration bin contributions to NO2AA were not grouped in specific regions of Europe, and within relatively small geographic regions there were sites with similar NO2AA, but with differences in these contributions. Specifically, at sites with highest NO2AA, there were generally similar contributions from across the year, but there were also differences in the contribution of peak vs moderate hourly NO2 concentrations to NO2AA, and from different hours across the day. Trends between 2000 and 2014 for 259 sites indicate that, in general, the contribution to NO2AA from winter months has increased, as has the contribution from the rush-hour periods of the day, while the contribution from peak hourly NO2 concentrations has decreased. The variety of monthly, hour of day and hourly NO2 contribution bin contributions to NO2AA, across cities, countries and regions of Europe indicate that within relatively small geographic areas different interactions between emissions, atmospheric chemistry and meteorology produce variation in NO2AA and the conditions that produce it. Therefore, measures implemented to reduce NO2AA in one location may not be as effective in others. The development of strategies to reduce NO2AA for an area should consider i) the variation in monthly, hour of day and hourly NO2 concentration bin contributions to NO2AA within that area, and ii) how specific mitigation actions will affect variability in hourly NO2 concentrations.


Sign in / Sign up

Export Citation Format

Share Document