Engine Enhancement Using Enriched Oxygen Inlet

Author(s):  
Singh P. Shivakumar

An internal combustion engine essentially requires a fuel which must have sufficient calorific value to produce enough power, and oxygen for the combustion of fuel. In normal vehicles fuel will be supplied from a fuel tank equipped with it. And oxygen will be taken from the atmospheric itself. Under normal conditions the percentage of oxygen present in atmospheric air will be around 21% of the total volume. Studies shows that by increasing the oxygen percentage in the inlet air increases engine performance and reduces emission produced by the engine.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6473
Author(s):  
Stanislaw Szwaja ◽  
Michal Gruca ◽  
Michal Pyrc ◽  
Romualdas Juknelevičius

Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines.


2019 ◽  
Vol 42 ◽  
pp. e43882
Author(s):  
Omar Seye ◽  
Rubem Cesar Rodrigues Souza ◽  
Ramon Eduardo Pereira Silva ◽  
Robson Leal da Silva

This paper evaluates internal combustion engine performance parameters (Specific Fuel Consumption and engine torque) and pollutant emissions (O2, CO, and NOX), and also, provide an assessment of economic viability for operation in Amazonas state. Power supply to the communities in the Amazon region has as characteristics high costs for energy generation and low fare. Extractive activities include plenty of oily plant species, with potential use as biofuel for ICE (Diesel cycle) to obtain power generation together with pollutant emission reduction in comparison to fossil fuel. Experimental tests were carried out with five fuel blends (crude palm oil) and diesel, at constant angular speed (2,500 RPM – stationary regime), and four nominal engine loads (0%, 50%, 75%, and 100%) in a test bench dynamometer for an engine-driven generator for electrical-power, 4-Stroke internal combustion engine, Diesel cycle. Main conclusions are: a) SFC and torque are at the same order of magnitude for PO-00 (diesel) and PO-xx at BHP50/75/100%; b) O2 emissions show consistent decreasing behavior as BHP increases, compatible to a rich air-fuel ratio (λ > 1) and, at the same BHP condition, O2 (%) is slightly lower for higher PO-xx content; c) The CO emissions for PO-00 consistently decrease while the BHP increases, as for PO-xx those values present a non-linear behavior; at BHP75%-100_loads, CO emissions are higher for PO-20 and PO-25 in comparison to PO-00; d) The overall trend for NOX emissions is to increase, the higher the BHP; In general, NOx emissions are lower for PO-xx in comparison to PO-00, except for PO-10 which presents slightly higher values than PO-00 for all BHP range; e) Assessment on-trend costs indicates that using palm oil blends for Diesel engine-driven generators in the Amazon region is economically feasible, with an appropriate recommendation for a rated power higher than 800 kW.


Author(s):  
Steven M. Nesbit

Abstract A four cylinder internal combustion engine was developed which utilizes a cross-slider as its internal mechanism. The mechanism consists of two perpendicular sliders, each connected at midpoint to a floating gear which mates to two grounded gears pinned off center. A complete kinematic and dynamic analysis was performed to study mechanism behavior in an engine application. As a result of the analysis, the kinematics and dynamics of the mechanism were defined, the engine performance was simulated, the components of the engine were properly sized, and a total force and torque balance was achieved. This article will present the development of the kinematic and dynamic expressions that describe the cross-slider mechanism as used in an internal combustion engine.


Author(s):  
A Erdil ◽  
A Kodal

In the current study, the phase averaging and the proper orthogonal decomposition (POD) methods are used to decompose experimentally measured turbulent velocity fields in an internal combustion engine. Radial and circumferential turbulent velocity fields were measured using hot wire anemometer under motoring conditions for both flat and bowl piston configurations. Decomposed results of the phase average and POD methods are compared with each other. The effects of piston configuration on the engine performance have been discussed. Also, obtained organized and turbulence motions and their energy spectra are examined. Finally, coherent structures of velocity fields and their activities are investigated.


Sign in / Sign up

Export Citation Format

Share Document