scholarly journals Preparation and Study of CdO-CdO2 Nanoparticles for Solar Cells Applications

Author(s):  
Muneer H. Jadduaa ◽  
Nadir Fadhil Habubi ◽  
Alaa Z. Ckal

—In this study, (CdO) thin film, which was prepared by chemical method and deposited by drop casting technique on glass and silicon substrates have been studied . The structural, optical and chemical analysis were investigated. X-ray diffraction (XRD) measurements reveal that the (CdO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements assure that the energy gap of (CdO) thin film was found to be 2.5eV. I-V characterization of the solar cell under illumination at 40mW/cm2 fluence was investigated . The open circuit voltage (Voc) was 4.1V and short-circuit current density (Isc) was 1.44 mA. These measurements show that the fill factor (FF) and the conversion efficiency (η) ,were 36.2% and 6.8% respectively.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2021 ◽  
Vol 13 (23) ◽  
pp. 13087
Author(s):  
Waqas Farooq ◽  
Muhammad Ali Musarat ◽  
Javed Iqbal ◽  
Syed Asfandyar Ali Kazmi ◽  
Adnan Daud Khan ◽  
...  

Modification of a cell’s architecture can enhance the performance parameters. This paper reports on the numerical modeling of a thin-film organic solar cell (OSC) featuring distributed Bragg reflector (DBR) pairs. The utilization of DBR pairs via the proposed method was found to be beneficial in terms of increasing the performance parameters. The extracted results showed that using DBR pairs helps capture the reflected light back into the active region by improving the photovoltaic parameters as compared to the structure without DBR pairs. Moreover, implementing three DBR pairs resulted in the best enhancement gain of 1.076% in power conversion efficiency. The measured results under a global AM of 1.5G were as follows: open circuit voltage (Voc) = 0.839 V; short circuit current density (Jsc) = 10.98 mA/cm2; fill factor (FF) = 78.39%; efficiency (η) = 11.02%. In addition, a thermal stability analysis of the proposed design was performed and we observed that high temperature resulted in a decrease in η from 11.02 to 10.70%. Our demonstrated design may provide a pathway for the practical application of OSCs.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


2015 ◽  
Vol 1107 ◽  
pp. 625-630
Author(s):  
Fatin Hana Naning ◽  
S. Malik ◽  
Zanuldin Ahmad

Cadmium sulfide (CdS) were synthesised directly in the active layer of solar cell by mixing regioregular poly (3-hexylthiophene-2,5-diyl) or P3HT with stearic acid, and exposed to hydrogen sulfide gas. The exposure times to hydrogen sulfide gas were varied and the isotherm of P3HT:Stearic acid obtained show that the presence of cadmium ions in the subphase changes the gas-liquid-solid transformation profile. UV-Vis-NIR results indicated that exposure to hydrogen sulfide gas created CdS particles resulting in wider absorption spectra. The exposed P3HT:SA active layer exhibit high resistance that affects short circuit current density and open circuit voltage of the solar cells device. Keywords: CdS, P3HT, Thin Film, Angle Lifting Deposition, Solar Cells


2013 ◽  
Vol 743-744 ◽  
pp. 920-925
Author(s):  
Hong Zhou Yan ◽  
Jun You Yang ◽  
Shuang Long Feng ◽  
Ming Liu ◽  
Jiang Ying Peng ◽  
...  

TiO2 nanotubes array was fabricated by anodization. Effect of reaction duration on the morphology of TiO2 nanotube arrays was studied detailedly. The structure and morphology of the prepared nanotubes array was characterized by X-ray diffraction and scanning electron microscopy, respectively. The fabricated TiO2 arrays were peeled off and adhered to FTO glass with adhesive (mixture of tetrabutyl titanate and polyethylene glycol), then they were sintered at 450 for photoanode of DSSC. The photovoltaic performance of the prepared sample as the DSSC anode was investigated. An open circuit voltage of 0.69V and a short circuit current density of 7.78mA/cm2 were obtained, and the fill factor and the convert efficiency were 0.517 and 2.78%, respectively.


2014 ◽  
Vol 925 ◽  
pp. 605-609 ◽  
Author(s):  
A.S. Obaid ◽  
Alaa Ahmed Dihe ◽  
B.M. Salih ◽  
Z. Hassan ◽  
Y. Al-Douri ◽  
...  

This study reports on the fabrication of a Schottky solar cell with a cross-sectional schematic: ITO/PbS/Al with a commercial transparent conductive ITO and a p-type PbS absorber layer deposited by using a thermal evaporator. The structural and optical properties of constituent films are presented. X-ray diffraction showed that the thin films are polycrystalline. By using scanning electron microscopy, this study showed that the films possessed a uniform surface morphology over the substrate, and the films exhibit a nanocoral structure. Open circuit voltage,short-circuit current density and characteristics were studied under 30 mW/cm2 solar radiation.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Sarah Messina ◽  
M.T.S. Nair ◽  
P. K. Nair

AbstractSolar cell structures with Sb2SxSe3-x and PbS as absorber layers were fabricated by chemical deposition on commercial transparent conductive oxide coated glass. The solid solution here was prepared by heating at 250°C a Sb2S3 thin film in contact with a chemically deposited Se-thin film. It has a graded band gap of 1-1.8 eV. A PbS thin film deposited on this layer basically fulfils the role of a p+ layer; its role as an absorber is yet to be studied. Open circuit voltage of 560 mV and short circuit current density ¡Ö 1mA/cm2under 1-3 kW/m2 tungsten halogen radiation are characteristics of these cells. Optimization of the film thicknesses and heating may offer prospects for these materials toward alternate thin film solar cell technology.


2019 ◽  
Vol 150 (11) ◽  
pp. 1921-1927 ◽  
Author(s):  
Stefan Weber ◽  
Thomas Rath ◽  
Birgit Kunert ◽  
Roland Resel ◽  
Theodoros Dimopoulos ◽  
...  

Abstract In this work, the influence of a partial introduction of bromide (x = 0–0.33) into MA0.75FA0.15PEA0.1Sn(BrxI1−x)3 (MA: methylammonium, FA: formamidinium, PEA: phenylethylammonium) triple cation tin perovskite on the material properties and photovoltaic performance is investigated and characterized. The introduction of bromide shifts the optical band gap of the perovskite films from 1.29 eV for the iodide-based perovskite to 1.50 eV for the perovskite with a bromide content of x = 0.33. X-ray diffraction measurements reveal that the size of the unit cell is also gradually reduced based on the incorporation of bromide. Regarding the photovoltaic performance of the perovskite films, it is shown that already small amounts of bromide (x = 0.08) in the perovskite system increase the open circuit voltage, short circuit current density and fill factor. The maximum power conversion efficiency of 4.63% was obtained with a bromide content of x = 0.25, which can be ascribed to the formation of homogeneous thin films in combination with higher values of the open circuit voltage. Upon introduction of a higher amount of bromide (x = 0.33), the perovskite absorber layers form pinholes, thus reducing the overall device performance. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document