scholarly journals DESIGN OPTIMIZATION OF STEEL MOMENT FRAMES UNDER EXTREME EARTHQUAKE LOADING

2007 ◽  
pp. 485-511
Author(s):  
Yanglin Gong ◽  
◽  
2005 ◽  
Vol 8 (6) ◽  
pp. 573-584 ◽  
Author(s):  
Yanglin Gong

The paper presents a design optimization method for steel moment frames under extreme earthquake loading. Seismic demands of the structures are evaluated using a nonlinear pushover analysis procedure. Least structural weight is taken explicitly as one design objective. The other objective, pursuing uniform ductility demands in all stories, is realized indirectly by imposing an equal limit to the plastic interstory drift ratio of each story. Explicit forms of the objective function and constraints in terms of member sizing variables are formulated to enable computer solution for the optimization model. The proposed design formulation seeks a least-weight design with an optimal lateral stiffness distribution for steel moment frames. The concepts are illustrated for a three-story moment frame example.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Sign in / Sign up

Export Citation Format

Share Document