scholarly journals A Comprehensive Survey on Novel Fault Current Limiters in Wind Energy Conversion System

Author(s):  
Preeti Verma ◽  
Pankaj Gupta ◽  
Amarjeet Singh

The interest for power is expanding at a very high rate, and the generation of power is running in front of supply. The presentation of distributed vitality assets is the greatest change happening to the dispersion arrangement. There is an expanded reconciliation of distributed vitality assets with the circulation arrange utilizing power hardware converters to meet the consistently expanding request of power. In the future, normally, the entrance level of appropriated vitality assets will further increment. The association of circulated vitality assets with the circulation system brings about increment in the estimation of issue current, which can cause unusual conditions in the whole control framework to arrange. The equipment introduced at the producing station and the substation is over the top expensive. In this way, it is important to shield this equipment from the fault current. A fault current limiter (FCL) is a progressive power framework device that beats the issues because of expanded deficiency current levels. It is a device that lessens the imminent issue flows to a lower sensible level. In this paper principals of activity and structures of the different current limiter is examined. It surrenders short and to-date writing audit of regular shortcoming current constraining gadgets just as deficiency momentum constraining gadgets which are still in an examination or improvement arrange.

2020 ◽  
Author(s):  
Alexandre Bitencourt ◽  
Daniel H. N. Dias ◽  
Bruno W. França ◽  
Felipe Sass ◽  
Guilherme G. Sotelo

The increase in demand for electric power and the insertion of a distributed generation led to the rise of the short-circuit current in substations. Most of these Brazilian substations were designed decades ago, because of that their equipment may not support the new short-circuit current levels. To protect the installed equipment and avoid excessive costs replacing old devices, it is possible to install Fault Current Limiters (FCLs). This document is a report from an R&D project that evaluated FCL topologies considering real parameters in simulation from used equipment, concluding that the selected FCL topologies accomplished their technical objective. However, before implementing these topologies in the distribution system, one should consider the technical and economic feasibility of using semiconductor switching devices.


Author(s):  
S. Sanjeeva Rayudu ◽  
C. Ganesh ◽  
B.Vignesh Naik

<p>Superconducting fault-current limiters (SFCLs) have been the subject of research and development for many years and offer an attractive solution to the problem of rising fault levels in electrical distribution systems.  SFCLs can greatly reduce fault currents and the damage at the point of fault, and help improve the stability of a power system. Superconducting fault-current limiters (SFCL) provide a  new efficient approach to the reliable handling of such  faults.(SCFLs) can be used for various nominal voltages and currents, and can  be  adapted  to  particular  limiting  characteristics  in  case  of  short  circuits. In this project, dc resistive type superconducting fault current limiter (SFCL) is presented. This SFCL is designed for the HVDC system.  Uniform current and voltage sharing among the SFCL modules can be observed through contact resistance tests, dc flow-through tests, and ac flow-through tests. Results of tests show that each limiting module has good uniformity in higher current system. The proposed concept can be implemented using renewable energy sources. The results are presented by using Matlab/simulink platform.</p>


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1832
Author(s):  
Marcela Pekarčíková ◽  
Jozef Mišík ◽  
Marian Drienovský ◽  
Jozef Krajčovič ◽  
Michal Vojenčiak ◽  
...  

We enhanced the performance of superconducting tapes during quenching by coating the tapes with various composites, with regards to the application of such coated systems in superconducting fault current limiters. In composition of the coating, we varied the type of epoxy matrix, the content of ceramic filler particles and the use of reinforcement in order to optimize the thermal and the mechanical stability of the coated tapes. By this way modified superconducting tapes were able to reduce the maximum temperature 170 °C of not modified superconducting tape to 55 °C during the quench with electric field up to 130 V m−1.


Author(s):  
Willy Stephen Tounsi Fokui ◽  
Michael Saulo ◽  
Livingstone Ngoo

The electrical distribution network is undergoing tremendous modifications with the introduction of distributed generation technologies which have led to an increase in fault current levels in the distribution network. Fault current limiters have been developed as a promising technology to limit fault current levels in power systems. Though, quite a number of fault current limiters have been developed; the most common are the superconducting fault current limiters, solid-state fault current limiters, and saturated core fault current limiters. These fault current limiters present potential fault current limiting solutions in power systems. Nevertheless, they encounter various challenges hindering their deployment and commercialization. This research aimed at designing a bridge-type nonsuperconducting fault current limiter with a novel topology for distribution network applications. The proposed bridge-type nonsuperconducting fault current limiter was designed and simulated using PSCAD/EMTDC. Simulation results showed the effectiveness of the proposed design in fault current limiting, voltage sag compensation during fault conditions, and its ability not to affect the load voltage and current during normal conditions as well as in suppressing the source powers during fault conditions. Simulation results also showed very minimal power loss by the fault current limiter during normal conditions.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Lei Chen ◽  
Huiwen He ◽  
Guocheng Li ◽  
Hongkun Chen ◽  
Lei Wang ◽  
...  

In this paper, a hybrid high voltage direct current transmission system containing a line commutated converter and a voltage source converter is developed. To enhance the robustness of the hybrid transmission system against direct current short-circuit faults, resistive-type superconducting fault current limiters are applied, and the effectiveness of this approach is assessed. Related mathematical models are built, and the theoretical functions of the proposed approach are expounded. According to the transient simulations in MATLAB software, the results demonstrate that: (i) The superconducting fault current limiter at the voltage source converter station enables to very efficiently mitigate the fault transients, and owns an enhanced current-limiting ability for handling the short-line faults. (ii) The superconducting fault current limiter at the line commutated converter station is able to mildly limit the fault current and alleviate the voltage drop, and its working performance has a low sensitivity to the fault location. At the end of the study, a brief scheme design of the resistive-type superconducting fault current limiters is achieved. In conclusion, the application feasibility of the proposed approach is well confirmed.


Sign in / Sign up

Export Citation Format

Share Document