Methane Hydroxylation by Axially Ligated Iron (IV)-oxo Porphyrin Cation Radical Models

Author(s):  
Devendra Singh ◽  
Devesh Kumar ◽  
Sam P. de Visser

Methane hydroxylation is a thermochemically difficult process due to the strength of the C-H bond that needs to be broken in the process. In Nature only the methane monoxygenases have a catalytic center that is active enough to perform this task. Other metalloenzymes, such as, mononuclear iron monoxygenases and dioxygenases, including the cytochromes P450, are not known to catalyze methane hydroxylation. The cytochromes P450 contain an iron heme group that in a catalytic cycle is converted into an iron(IV)-oxo heme cation radical (Compound I). To gain insight into the features that affect methane hydroxylation by Compound I and synthetic model complexes, we have done a detailed computational study. Thus, we investigated the chemical properties of iron(IV)-oxo porphyrins with varying axial ligands, including SH<sup>−</sup>, F<sup>−</sup>, OH<sup>−</sup>, CN<sup>−</sup>, CF<sub>3</sub>COO<sup>−</sup> and CH<sub>3</sub>COO<sup>−</sup>. In addition, we calculated the methane hydroxylation pathways for a selection of these oxidants and rationalize the obtained trends with thermochemical cycles and valence bond schemes. In general, the rate determining hydrogen atom abstraction barrier is dependent on the π<sub>xz</sub>/π*<sub>xz</sub> energy splitting along the Fe−O bond, the excitation energy from π<sub>xz</sub> to a<sub>2u</sub>, as well as the bond dissociation energies of the methane C−H bond and the newly formed O−H bond. Our studies predict that iron(IV)-oxo porphyrin cation radical models with hydroxide as axial ligand should be efficient oxidants of substrate hydroxylation reactions and able to activate methane at room temperature. However, changing the axial ligand to a weaker electron donating group decreases its activity and raises the hydrogen atom abstraction barriers dramatically. These studies show that subtle modifications to the oxidant can have a great impact on the catalytic ability of the active center.

2014 ◽  
Vol 16 (41) ◽  
pp. 22611-22622 ◽  
Author(s):  
Baharan Karamzadeh ◽  
Devendra Singh ◽  
Wonwoo Nam ◽  
Devesh Kumar ◽  
Sam P. de Visser

Computational studies show that the perceived nonheme iron(v)–oxo is actually an iron(iv)–oxo ligand cation radical species.


2011 ◽  
Vol 17 (22) ◽  
pp. 6196-6205 ◽  
Author(s):  
Devesh Kumar ◽  
G. Narahari Sastry ◽  
Sam P. de Visser

2015 ◽  
Vol 6 (2) ◽  
pp. 1516-1529 ◽  
Author(s):  
Mala A. Sainna ◽  
Suresh Kumar ◽  
Devesh Kumar ◽  
Simonetta Fornarini ◽  
Maria Elisa Crestoni ◽  
...  

Trends in oxygen atom transfer to Compound I of the P450 models with an extensive test set have been studied and show a preferred regioselectivity of epoxidation over hydroxylation in the gas-phase for the first time.


2003 ◽  
Vol 100 (12) ◽  
pp. 6998-7002 ◽  
Author(s):  
V. Guallar ◽  
M.-H. Baik ◽  
S. J. Lippard ◽  
R. A. Friesner

2010 ◽  
Vol 14 (05) ◽  
pp. 371-374 ◽  
Author(s):  
Radu Silaghi-Dumitrescu

Catalases employ a tyrosinate-ligated ferric heme in order to catalyze the dismutation of hydrogen peroxide to O2 and water. In the first half of the catalytic cycle, H2O2 oxidizes Fe(III) to the formally Fe(V) state commonly referred to as Compound I. The second half of the cycle entails oxidation of a second hydrogen peroxide molecule by Compound I to dioxygen. The present study employs density functional (DFT) calculations to examine the nature of this second step of the catalatic reaction. In order to account for the unusual choice of tyrosinate as an axial ligand in catalases, oxidation of hydrogen peroxide by an imidazole-ligated Compound I is also examined, bearing in mind that imidazole-ligated hemoproteins such as myoglobin or horseradish peroxidase tend to display little, if any, catalatic activity. Furthermore, in order to gauge the importance of the cation radical of Compound I in peroxide activation, the performance of Compound II (the one-electron reduced version of Compound I, formally Fe(IV) ), is also examined. It is found that hydrogen peroxide oxidation occurs in a quasi-concerted manner, with two hydrogen-atom transfer reactions, and that the tyrosinate ligand is in no way required at this stage. We propose that the role of the tyrosinate is purely thermodynamic, in avoiding accumulation of the much less peroxide-reactive ferrous form in vivo – all in line with the predominantly thermodynamic role of the cysteinate ligands in enzymes such as cytochromes P450.


2007 ◽  
Vol 104 (49) ◽  
pp. 19181-19186 ◽  
Author(s):  
C. V. Sastri ◽  
J. Lee ◽  
K. Oh ◽  
Y. J. Lee ◽  
J. Lee ◽  
...  

2005 ◽  
Vol 70 (11) ◽  
pp. 1769-1786 ◽  
Author(s):  
Luc A. Vannier ◽  
Chunxiang Yao ◽  
František Tureček

A computational study at correlated levels of theory is reported to address the structures and energetics of transient radicals produced by hydrogen atom abstraction from C-1, C-2, C-3, C-4, C-5, O-1, O-3, and O-5 positions in 2-deoxyribofuranose in the gas phase and in aqueous solution. In general, the carbon-centered radicals are found to be thermodynamically and kinetically more stable than the oxygen-centered ones. The most stable gas-phase radical, 2-deoxyribofuranos-5-yl (5), is produced by H-atom abstraction from C-5 and stabilized by an intramolecular hydrogen bond between the O-5 hydroxy group and O-1. The order of radical stabilities is altered in aqueous solution due to different solvation free energies. These prefer conformers that lack intramolecular hydrogen bonds and expose O-H bonds to the solvent. Carbon-centered deoxyribose radicals can undergo competitive dissociations by loss of H atoms, OH radical, or by ring cleavages that all require threshold dissociation or transition state energies >100 kJ mol-1. This points to largely non-specific dissociations of 2-deoxyribose radicals when produced by exothermic hydrogen atom abstraction from the saccharide molecule. Oxygen-centered 2-deoxyribose radicals show only marginal thermodynamic and kinetic stability and are expected to readily fragment upon formation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Yu Huang ◽  
Jianbin Li ◽  
Chao-Jun Li

AbstractHydrogen atom abstraction (HAT) from C(sp3)–H bonds of naturally abundant alkanes for alkyl radical generation represents a promising yet underexplored strategy in the alkylation reaction designs since involving stoichiometric oxidants, excessive alkane loading, and limited scope are common drawbacks. Here we report a photo-induced and chemical oxidant-free cross-dehydrogenative coupling (CDC) between alkanes and heteroarenes using catalytic chloride and cobalt catalyst. Couplings of strong C(sp3)–H bond-containing substrates and complex heteroarenes, have been achieved with satisfactory yields. This dual catalytic platform features the in situ engendered chlorine radical for alkyl radical generation and exploits the cobaloxime catalyst to enable the hydrogen evolution for catalytic turnover. The practical value of this protocol was demonstrated by the gram-scale synthesis of alkylated heteroarene with merely 3 equiv. alkane loading.


Sign in / Sign up

Export Citation Format

Share Document