scholarly journals Characteristic Model Based All-Coefficient Adaptive Control on Flexible Rotor Supported by Active Magnetic Bearings

2013 ◽  
Author(s):  
Long Di
2004 ◽  
Vol 10 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Rainer Nordmann ◽  
Martin Aenis

The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate defined motions respectively forces as well as very precise sensor elements for the contactless measurement of the responding displacements and forces. In the linear case, meaning small motions around an operating point, it is possible to derive compliance frequency response functions from the acquired data. Based on these functions, a model-based fault detection and diagnosis is developed which facilitates the detection of faults compared to state-of-the-art diagnostic tools which are only based on the measurement of the systems outputs, i.e., displacements. In this article, the different steps of the model-based diagnosis, which are modeling, generation of significant features, respectively symptoms, fault detection, and the diagnosis procedure itself are presented and in particular, it is shown how an exemplary fault is detected and identified.


Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


Sign in / Sign up

Export Citation Format

Share Document