scholarly journals Late blight: pathogen variability and disease resistance breeding in Ecuador

2019 ◽  
Author(s):  
Ricardo Delgado
2018 ◽  
Author(s):  
Miles R Armstrong ◽  
Jack Vossen ◽  
Tze Yin Lim ◽  
Ronald C B Hutten ◽  
Jianfei Xu ◽  
...  

SummaryFollowing the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans)gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.


2010 ◽  
Vol 9 (8) ◽  
pp. 437-446 ◽  
Author(s):  
Ramesh Chandra ◽  
Madhu Kamle ◽  
Anju Bajpai ◽  
M. Muthukumar ◽  
Shahina Kalim

2018 ◽  
Vol 56 (1) ◽  
pp. 67-87 ◽  
Author(s):  
Beat Keller ◽  
Thomas Wicker ◽  
Simon G. Krattinger

The gene pool of wheat and its wild and domesticated relatives contains a plethora of resistance genes that can be exploited to make wheat more resilient to pathogens. Only a few of these genes have been isolated and studied at the molecular level. In recent years, we have seen a shift from classical breeding to genomics-assisted breeding, which makes use of the enormous advancements in DNA sequencing and high-throughput molecular marker technologies for wheat improvement. These genomic advancements have the potential to transform wheat breeding in the near future and to significantly increase the speed and precision at which new cultivars can be bred. This review highlights the genomic improvements that have been made in wheat and its pathogens over the past years and discusses their implications for disease-resistance breeding.


Author(s):  
G. Timmerman-Vaughan ◽  
A.C. Russell ◽  
A. Hill ◽  
T.J. Frew ◽  
B.J. Gilpin

Sign in / Sign up

Export Citation Format

Share Document