scholarly journals Overconstrained Cable-Driven Parallel Manipulators Statics Analysis Based on Simplified Static Cable Model

2022 ◽  
pp. 159-165
Author(s):  
Phan Gia Luan ◽  
Nguyen Truong Thinh
2021 ◽  
Author(s):  
Phan Gia Luan ◽  
Nguyen Truong Thinh

Abstract In recent years, cable-driven parallel manipulators (CDPM) become more and more interesting topics of robot researchers due to its outstanding advantages. Unlike traditional parallel robots, CDPMs use many flexible cables in order to connect the robot fixed frame and the moving platform instead of using conventional rigid links. Since cables used in CDPM is very light compared to rigid links, its workspace can be very large. Besides, CDPMs are often enhanced load capacity by adding redundant actuators. They also help to widen the singularity-free workspace of CDPM. On the other hand, the redundant actuators produce the underdetermined system i.e. the system has non-unique solutions. Moreover, the elasticity and bendability of flexible cable caused by self-weight and external forces act on it, resulting in the kinematic problem of CDPMs are no longer related to the geometric problem. Therefore, the system of CDPM become non-linear when the deformation of cable is considered. In this study, we introduce the simplified static cable model and use it to linearize the static model of redundantly actuated CDPM. The algorithm to solve the force distribution problem is proposed in Sect. 4. The static-workspace and the performance of those are analyzed in a numerical test.


2020 ◽  
Vol 53 (2) ◽  
pp. 8456-8461
Author(s):  
Dmitrii Dobriborsci ◽  
Sergey Kolyubin ◽  
Natalia Gorokhova ◽  
Marina Korotina ◽  
Alexey Bobtsov

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


2020 ◽  
Vol 10 (1) ◽  
pp. 65-70
Author(s):  
Andrei Gorchakov ◽  
Vyacheslav Mozolenko

AbstractAny real continuous bounded function of many variables is representable as a superposition of functions of one variable and addition. Depending on the type of superposition, the requirements for the functions of one variable differ. The article investigated one of the options for the numerical implementation of such a superposition proposed by Sprecher. The superposition was presented as a three-layer Feedforward neural network, while the functions of the first’s layer were considered as a generator of space-filling curves (Peano curves). The resulting neural network was applied to the problems of direct kinematics of parallel manipulators.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2017 ◽  
Vol 53 (2) ◽  
pp. 74-75 ◽  
Author(s):  
Yunong Zhang ◽  
Liangyu He ◽  
Shuai Li ◽  
Dechao Chen ◽  
Yaqiong Ding

Sign in / Sign up

Export Citation Format

Share Document