scholarly journals Overconstrained Cable-Driven Parallel Manipulators Statics Analysis based on Simplified Static Cable Model

Author(s):  
Phan Gia Luan ◽  
Nguyen Truong Thinh

Abstract In recent years, cable-driven parallel manipulators (CDPM) become more and more interesting topics of robot researchers due to its outstanding advantages. Unlike traditional parallel robots, CDPMs use many flexible cables in order to connect the robot fixed frame and the moving platform instead of using conventional rigid links. Since cables used in CDPM is very light compared to rigid links, its workspace can be very large. Besides, CDPMs are often enhanced load capacity by adding redundant actuators. They also help to widen the singularity-free workspace of CDPM. On the other hand, the redundant actuators produce the underdetermined system i.e. the system has non-unique solutions. Moreover, the elasticity and bendability of flexible cable caused by self-weight and external forces act on it, resulting in the kinematic problem of CDPMs are no longer related to the geometric problem. Therefore, the system of CDPM become non-linear when the deformation of cable is considered. In this study, we introduce the simplified static cable model and use it to linearize the static model of redundantly actuated CDPM. The algorithm to solve the force distribution problem is proposed in Sect. 4. The static-workspace and the performance of those are analyzed in a numerical test.

2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Júlia Borràs ◽  
Aaron M. Dollar

This work studies in detail how the judicial application of compliance in parallel manipulators can produce manipulators that require significantly lower actuator effort within a range of desired operating conditions. We propose a framework that uses the Jacobian matrices of redundant parallel manipulators to consider the influence of compliance both in parallel with the actuated joints as well as the passive joints, greatly simplifying previous approaches. We also propose a simple optimization procedure to maximize the motor force reduction for desired regions of the workspace and range of external forces. We then apply the method to a Stewart-Gough platform and to a 3-URS (universal rotational and spherical joint) manipulator. Our results show that parallel manipulators with tasks that involve a preferred external force direction, as for instance, big weights in the platform, can see large reductions in actuator effort through the judicial use of compliant joints without significantly losing rigidity.


2020 ◽  
Vol 10 (15) ◽  
pp. 5318
Author(s):  
Phan Gia Luan ◽  
Nguyen Truong Thinh

Cable-driven parallel manipulators (CDPMs) have been of great interest to researchers in recent years because they have many advantages compared to the traditional parallel robot. However, in many studies they lack the cable’s elasticity that leads to flexible cables just being considered as extendable rigid links. Furthermore, an external force acts on the extremities of cable and the self-weight is relevant to the length of it. Experimentally, a small change in length produces a huge change in tension act on the entire cable. By this property, the adjusting length of cable is often added to the traditional inverse kinematic solution in order to reduce the tension force exerted on the cable. This means that the load on the actuator is also reduced. Because of the relationship between tension that acts on the cable and its length, the kinematic problem itself does not make sense without concerning the static or dynamic problems. There is often interest in planning forces for actuators and the length of cables based on a given quasi-static trajectory of the moving platform. The mentioned problem is combined with the quasi-static problem with the inverse kinematic problem of CDPM. In this study, we introduce a novel procedure to produce the quasi-static model and inverse kinematic model for CDPM with the presence of sagging by using both an analytic approach and empirical approach. The produced model is time-efficient and is generalized for spatial CDPM. To illustrate the performance of the proposed model, the numerical and experimental approaches are employed to determine particular solutions in the feasible solutions set produced by our model in order to control the two redundant actuators’ CDPM tracking on a certain desired trajectory. Its results are clearly described in the experimental section.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 353-353
Author(s):  
François Pierrot

It has been a pleasure for me to arrange this Special Issue of Robotica on Parallel Robots which provides 9 papers from authors from Asia, Oceania, North America and Europe; worldwide research on this topic is proof of the growing interest of both the scientific and the industrial areas of parallel mechanisms. I truly believe that the main reason for this enthusiasm is that parallel mechanisms research extends from theoretical mathematics and kinematics to applied robotics, and even beyond, creating new technological challenges.


2021 ◽  
Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Author(s):  
Yu-Tong Li ◽  
Yu-Xin Wang

Kinematic parameters have significant influences on the motion stability of parallel manipulators at singular configureations. Taking the plane 3-RPR parallel manipulator as an example, the motion stability at different types of singular configurations corresponding to the angular speed and velocity of the movable platform are investigated. At first, the second order of uncoupled dynamics equation for the 3-RPR parallel manipulator is established with the aid of the second class Lagrange approach. According to the Lyapunov first approximate stability criterion, the approximate conditions for the 3-RPR parallel manipulator with a stabile motion at singular configurations are determined based on the Gerschgorin circle theorem. Next, the exact Hurwitz criterion is utilized to study the motion stability and the load capability of the manipulator corresponding to the angular speed and velocity of the movable platform, as well as the directions of the external forces at two kinds of singular configurations: with a gained rotation-type DOF, and with a gained translation-type DOF, respectively. The results show that increasing both the angular speed and the velocity of the mass center of the movable platform can efficiently improve the motion stability of the 3-RPR parallel manipulator at singular configurations.


2017 ◽  
Vol 84 (2) ◽  
pp. 58-64 ◽  
Author(s):  
P. Różyło

Purpose: The aim of the work was to analyse the critical state of thin-walled composite profiles with top-hat cross section under axial compression. Design/methodology/approach: The purpose of the work was achieved by using known approximation methods in experimental and finite element methods for numerical simulations. The scope of work included an analysis of the behavior of thin-walled composite structures in critical state with respect to numerical studies verified experimentally. Findings: In the presented work were determined the values of critical loads related to the loss of stability of the structures by using well-known approximation methods and computer simulations (FEM analysis). Research limitations/implications: The research presented in the paper is about the potential possibility of determining the values of critical loads equivalent to loss of stability of thin-walled composite structures and the future possibility of analyzing limit states related to loss of load capacity. Practical implications: The practical approach in the actual application of the described specimen and methodology of study is related to the necessity of carrying out of strength analyzes, allowing for a precise assessment of the loads upon which the loss of stability (bifurcation) occurs. Originality/value: The originality of the research is closely associated with used the thinwalled composite profile with top-hat cross-section, which is commonly used in the fuselage of passenger airplane. The methodology of simultaneous confrontation of the obtained results of critical loads by using approximation methods and using the linear eigenvalue solution in numerical analysis demonstrates the originality of the research character. Presented results and the methodology are intended for researchers, who are concerned with the topic of loss of stability of thin-walled composite structures.


Author(s):  
Sung-Hyun Choi ◽  
Kyoung-Su Park

Since cable driven parallel robots (CDPRs) have many advantages, they have been used in many industrial fields. Fully constrained CDPRs mainly use Dyneema polyethylene because it has advantage of the lower weight than steel wire. However, the polyethylene cable has complex elastic characteristics (e.g. permanent stretch and hysteresis). In this paper, the advanced numerical modeling of nonlinear elastic cable with permanent stretch using cable driven parallel robot was derived and simulated for various cable condition. Based on the advanced numerical nonlinear cable model, the simulation was carried out under the various cable lengths and tensions. Compared to the experimental results, the simulation results are good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document