scholarly journals Domestic Hot Water Consumption Profiles Applied to a Flat Tubular Collector for Solar Water Heating in Bogotá

TECCIENCIA ◽  
2021 ◽  
Vol 16 (31) ◽  
pp. 29-52
Author(s):  
Juan Andrés Ávila Carranza ◽  
Carlos Mario Rocha-Osorio ◽  
Juan Sebastián Solís-Chave

The use of Flat Solar Collectors for the generation of Domestic Hot Water (DHW), facilitates access to this resource in an efficient, economical and sustainable way. The Sustainable Development Goals proposed by the UN, referring specifically to sustainable water management and access to renewable energy, are the main motivation for this work, since the former is an essential vital resource and its access reduces the inequality index, in developing countries such as Colombia, while the use of solar thermal energy reduces the environmental impact of the water heating process, thus reducing the consumption of electrical energy in the residential sector. Therefore, this work proposes to estimate DHW profiles through a spreadsheet that models the DHW flow thermodynamically for a whole year, making it possible to evaluate the energy performance of a Solar Collector available in the Colombian market and that is used in four types of dwellings located in the city of Bogotá. The simulation results present the DHW consumption profiles in kg/h per year, with DHW temperatures of up to 21°C, for a total transmitted irradiance of the order of 1100 W/m^2, which produces thermal energy close to 1kW. This comparative analysis allows us to review the technical and economic feasibility of solar collectors installed in single-family homes and with a DHW consumption profile close to the Colombian socio-economic reality.

TECCIENCIA ◽  
2020 ◽  
Vol 16 (30) ◽  
pp. 29-52
Author(s):  
Juan Andres Avila Carraznza ◽  
Carlos Mario Rocha ◽  
Juan Sebastian Solis Chavez

The use of Flat Solar Collectors for the generation of Domestic Hot Water (DHW), facilitates access to this resource in an efficient, economical and sustainable way. The Sustainable Development Goals proposed by the UN, referring specifically to sustainable water management and access to renewable energy, are the main motivation for this work, since the former is an essential vital resource and its access reduces the inequality index, in developing countries such as Colombia, while the use of solar thermal energy reduces the environmental impact of the water heating process, thus reducing the consumption of electrical energy in the residential sector. Therefore, this work proposes to estimate DHW profiles through a spreadsheet that models the DHW flow thermodynamically for a whole year, making it possible to evaluate the energy performance of a Solar Collector available in the Colombian market and that is used in four types of dwellings located in the city of Bogotá. The simulation results present the DHW consumption profiles in kg/h per year, with DHW temperatures of up to 21°C, for a total transmitted irradiance of the order of 1100 W/m^2, which produces thermal energy close to 1kW. This comparative analysis allows us to review the technical and economic feasibility of solar collectors installed in single-family homes and with a DHW consumption profile close to the Colombian socio-economic reality


Author(s):  
Gonzalo Sánchez-Barroso ◽  
Jaime González-Domínguez ◽  
Justo García-Sanz-Calcedo

Hospitals need to prepare large amounts of domestic hot water (DHW) to develop their healthcare activity. The aim of this work was to analyse potential savings that can be achieved by installing solar thermal energy for production of domestic hot water in the hospitals of Extremadura (Spain). For this purpose, 25 hospitals between 533 and 87,118 m2 and between 15 and 529 beds were studied, three solar factor scenarios were simulated (0.70, 0.75 and 0.80) and the necessary investment and corresponding economic and environmental savings were calculated. Better economic results and energy ratios for 70% of solar contribution were obtained. These results show an average payback of 4.74 years (SD = 0.26) reaching 4.29 kWh/€ per year (SD = 0.20). Undertaking an investment of 674,423 €, 2,895,416 kWh/year of thermal energy could be generated with which to save both 145,933 € and 638 tons of CO2 per year. It was statistically demonstrated the priority of carrying out an installation with a solar factor of 70%, investing preferably in hospitals in Cáceres over those in Badajoz, especially in the public sector with more than 300 beds. These findings will provide hospital managers with useful information to make decisions on future investments.


2012 ◽  
Vol 97 ◽  
pp. 897-906 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
M. Legrand ◽  
R. Ventas

2012 ◽  
Vol 45 ◽  
pp. 152-160 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
J. Nogueira

2021 ◽  
Vol 19 ◽  
pp. 269-275
Author(s):  
Mateo Astudillo-Flores ◽  
◽  
Esteban Zalamea-Leon ◽  
Antonio Barragán-Escandón ◽  
M.R. Pelaez Samaniego ◽  
...  

The Andean Equatorial Region, due to its geographic location, shows great potential for using solar energy. Solar thermal energy is of interest in the residential sector in Ecuador and other Andean countries as a method to avoid fossilderived fuels consumption. However, previous learnings of the operation of solar water heating systems in other latitudes cannot be used in the conditions of Ecuador. Thus, the performance of the solar thermal energy systems in this geographic region deserves further study that consider typical high levels of cloudiness and fast climate oscillations. The objective of this work was to investigate the effect of the orientation of solar thermal plates on their energy efficiency and model the behaviour of these systems to predict their operation under Equatorial Andean climate conditions. For the F-Chart calibration different slopes angles were used, according to the typical roofs slopes in Cuenca, Ecuador. Results showed a monthly solar fraction, contributed by an evacuated tube collector is 26% higher than the flat plate collectors. The results also depict that, in the conditions of Cuenca, the greater solar water heating occurs when the collector is inclined 14° and facing towards the south. These findings can be used to predict the best operational conditions for using solar thermal energy collectors to produce hot water in the residential sector under equatorial highland altitude conditions.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5137
Author(s):  
Paweł Ocłoń ◽  
Maciej Ławryńczuk ◽  
Marek Czamara

The objectives of this work are: (a) to present a new system for building heating which is based on underground energy storage, (b) to develop a mathematical model of the system, and (c) to optimise the energy performance of the system. The system includes Photovoltaic Thermal Hybrid Solar Panels (PVT) panels with cooling, an evacuated solar collector and a water-to-water heat pump. Additionally, storage tanks, placed underground, are used to store the waste heat from PVT panels cooling. The thermal energy produced by the solar collectors is used for both domestic hot water preparation and thermal energy storage. Both PVT panels and solar collectors are assembled with a sun-tracking system to achieve the highest possible solar energy gain. Optimisation of the proposed system is considered to achieve the highest Renewable Energy Sources (RES) share during the heating period. Because the resulting optimisation problem is nonlinear, the classical gradient-based optimisation algorithm gives solutions that are not satisfying. As alternatives, three heuristic global optimisation methods are considered: the Genetic Algorithm (GA), the Particle Swarm Optimisation (PSO) algorithm, and the Jaya algorithm. It is shown that the Jaya algorithm outperforms the GA and PSO methods. The most significant result is that 93% of thermal energy is covered by using the underground energy storage unit consisting of two tanks.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1449
Author(s):  
Sofía Sánchez Álvarez ◽  
Mª Pilar Castro García

This project presents the design of a simple software for the determination of solar coverage (f-Chart method) in domestic hot water installations. This program allows to determine in a fast and simple way, the fulfillment of the minimum needs of solar thermal energy supply according to the Technical Building Code.


Sign in / Sign up

Export Citation Format

Share Document