scholarly journals The Modified Kumaraswamy Weibull Distribution: Properties and Applications in Reliability and Engineering Sciences

Author(s):  
M. E. Mead ◽  
Ahmed Afify ◽  
Nadeem Shafique Butt

We introduce the Kumaraswamy alpha power-G (KAP-G) family which extends the alpha power family (Mahdavi and Kundu, 2017) and some other families. We consider the Weibull as baseline for the KAP family and generate Kumaraswamy alpha power Weibull distribution which has right-skewed, left-skewed, symmetrical, and reversed-J shaped densities, and decreasing, increasing, bathtub, upside-down bathtub, increasing-decreasing–increasing, J shaped and reversed-J shaped hazard rates. The proposed distribution can model non-monotone  and monotone failure rates which are quite common in engineering and reliability studies. Some basic mathematical properties of the new model are derived. The maximum likelihood estimation method is used to evaluate the parameters and the observed information matrix is determined. The performance and flexibility of the proposed family is illustrated via two real data applications.


Author(s):  
Ogunde Adebisi Ade ◽  
Chukwu Angela Unna ◽  
Agwuegbo Samuel Obi-Nnamd

This work provides a new statistical distribution named Cubic rank transmuted Inverse Weibull distribution which was developed using the cubic transmutation map. Various statistical properties of the new distribution which includes: hazard function, moments, moment generating function, skewness, kurtosis, Renyl entropy and the order statistics were studied. A maximum likelihood estimation method was used in estimating the parameters of the distribution. Applications to real data set show the tractability of the distribution over other distributions and its sub-model.



Author(s):  
A. A. Ogunde ◽  
B. Ajayi ◽  
D. O. Omosigho

This paper presents a new generalization of the extended Bur II distribution. We redefined the Bur II distribution using the Alpha Power Transformation (APT) to obtain a new distribution called the Alpha Power Transformed Extended Bur II distribution. We derived several mathematical properties for the new model which includes moments, moment generating function, order statistics, entropy etc. and used a maximum likelihood estimation method to obtain the parameters of the distribution. Two real-world data sets were used for applications in order to illustrate the usefulness of the new distribution.



2020 ◽  
Vol 24 (1) ◽  
pp. 1-33
Author(s):  
N. I. Badmus ◽  
◽  
Olanrewaju Faweya ◽  
K. A. Adeleke ◽  
◽  
...  

In this article, we investigate a distribution called the generalized beta-exponential Weibull distribution. Beta exponential x family of link function which is generated from family of generalized distributions is used in generating the new distribution. Its density and hazard functions have different shapes and contains special case of distributions that have been proposed in literature such as beta-Weibull, beta exponential, exponentiated-Weibull and exponentiated-exponential distribution. Various properties of the distribution were obtained namely; moments, generating function, Renyi entropy and quantile function. Estimation of model parameters through maximum likelihood estimation method and observed information matrix are derived. Thereafter, the proposed distribution is illustrated with applications to two different real data sets. Lastly, the distribution clearly shown that is better fitted to the two data sets than other distributions.



2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Felix Nwobi ◽  
Chukwudi Ugomma

In this paper we study the different methods for estimation of the parameters of the Weibull distribution. These methods are compared in terms of their fits using the mean square error (MSE) and the Kolmogorov-Smirnov (KS) criteria to select the best method. Goodness-of-fit tests show that the Weibull distribution is a good fit to the squared returns series of weekly stock prices of Cornerstone Insurance PLC. Results show that the mean rank (MR) is the best method among the methods in the graphical and analytical procedures. Numerical simulation studies carried out show that the maximum likelihood estimation method (MLE) significantly outperformed other methods.



2011 ◽  
Vol 83 (2) ◽  
pp. 357-373 ◽  
Author(s):  
Gauss M Cordeiro ◽  
Alexandre B Simas ◽  
Borko D Stošic

The beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.



Author(s):  
Wahid Shehata ◽  
Haitham M. Yousof

A new four-parameter lifetime model is introduced and studied. The new model derives its flexibility and wide applicability from the well-known exponentiated Weibull model. Many bivariate and the multivariate type versions are derived using the Morgenstern family and Clayton copula. The new density can exhibit many important shapes with different skewness and kurtosis which can be unimodal and bimodal. The new hazard rate can be decreasing, J-shape, U-shape, constant, increasing, upside down and increasing-constant hazard rates. Various of its structural mathematical properties are derived. Graphical simulations are used in assessing the performance of the estimation method. We proved empirically the importance and flexibility of the new model in modeling various types of data such as failure times, remission times, survival times and strengths data.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Masood Anwar ◽  
Amna Bibi

A new three-parameter generalized distribution, namely, half-logistic generalized Weibull (HLGW) distribution, is proposed. The proposed distribution exhibits increasing, decreasing, bathtub-shaped, unimodal, and decreasing-increasing-decreasing hazard rates. The distribution is a compound distribution of type I half-logistic-G and Dimitrakopoulou distribution. The new model includes half-logistic Weibull distribution, half-logistic exponential distribution, and half-logistic Nadarajah-Haghighi distribution as submodels. Some distributional properties of the new model are investigated which include the density function shapes and the failure rate function, raw moments, moment generating function, order statistics, L-moments, and quantile function. The parameters involved in the model are estimated using the method of maximum likelihood estimation. The asymptotic distribution of the estimators is also investigated via Fisher’s information matrix. The likelihood ratio (LR) test is used to compare the HLGW distribution with its submodels. Some applications of the proposed distribution using real data sets are included to examine the usefulness of the distribution.



2018 ◽  
Vol 14 (2) ◽  
pp. 27-43
Author(s):  
Nuri Celik

Abstract In this article, we introduce some examples of cubic rank transmuted distributions proposed by Granzatto et al. (2017). The statistical aspects of the introduced distributions such as probability density functions, hazard rate functions and reliability functions are studied. The maximum likelihood estimation method is used in order to estimate the parameters of interest. Finally, real data examples are applied for the illustration of these distributions.



Author(s):  
I. U. Akata ◽  
J. E. Osemwenkhae

In this paper, a new generalized distribution known as Weibull Logistic-Exponential Distribution (WLED) is proposed using the T-R{Y} framework. Several mathematical properties of this new distribution are studied. The maximum likelihood estimation method was used in estimating the parameters of the proposed distribution. Finally, an application of the proposed distribution to a real lifetime data set is presented and its fit was compared with the fit obtained by some comparable lifetime distributions.



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ehab M. Almetwally ◽  
Mohamed A. H. Sabry ◽  
Randa Alharbi ◽  
Dalia Alnagar ◽  
Sh. A. M. Mubarak ◽  
...  

This paper introduces the new novel four-parameter Weibull distribution named as the Marshall–Olkin alpha power Weibull (MOAPW) distribution. Some statistical properties of the distribution are examined. Based on Type-I censored and Type-II censored samples, maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation for the MOAPW distribution parameters are discussed. Numerical analysis using real data sets and Monte Carlo simulation are accomplished to compare various estimation methods. This novel model’s supremacy upon some famous distributions is explained using two real data sets and it is shown that the MOAPW model can achieve better fits than other competitive distributions.



Sign in / Sign up

Export Citation Format

Share Document