scholarly journals Endovascular Stenting for Idiopathic Intracranial Hypertension

2014 ◽  
Vol 4 (2) ◽  
pp. 49-52 ◽  
Author(s):  
Faizan Khan ◽  
Dana Iancu

Transverse sinus stenosis (TSS) is often observed in patients with idiopathic intracranial hypertension (IIH). Studies show that all symptoms of IIH can be resolved by transverse sinus stent placement. We present a case of a 39-year-old woman diagnosed with IIH presented with papilledema and severe headaches. The consideration of interventional management was necessitated by the preceding failure of several months of medical treatment. Her vascular imaging demonstrated stenosis of the transverse sinus and her intracranial venous pressure measurements indicated elevated pressure with a high pressure gradient across the stenosis. She underwent transverse sinus stent placement across the stenotic segment. After this intervention, her symptoms improved and her intracranial pressure normalized. The imaging follow-up revealed efficacious patency of the stent. Based on a mathematical model, we suggest that a Starling-like resistor demonstrating a collapsible transverse sinus can permanently be replaced by a rigid-walled sinus upon employment of an endovascular stent in the stenotic transverse sinus, which should be considered as an alternative to other surgical procedures for IIH patients.

2019 ◽  
Vol 10 ◽  
pp. 47 ◽  
Author(s):  
Yudai Morisaki ◽  
Ichiro Nakagawa ◽  
Koji Omoto ◽  
Takeshi Wada ◽  
Kimihiko Kichikawa ◽  
...  

Background: Idiopathic intracranial hypertension (IIH) shows symptoms by elevating intracranial pressure. Although sinus stenosis has been detected in many patients with IIH, the role of sinus stenosis in IIH remains obscure. Endovascular treatment for IIH due to transverse sinus stenosis has been frequently documented; however, IIH due to multiple sinus stenoses including the superior sagittal sinus (SSS) is rare. Here, we report a case of IIH due to multiple sinus stenoses treated by sinus stenting. Case Presentation: A 47-year-old woman suffered from intractable headache with IIH presented with stenosis of the right transverse and SSS. Stent placement was carried out since intracranial hypertension and trans-stenotic cerebral venous pressure gradient (CVPG) were presented, and her intractable headache disappeared. Conclusion: IIH can be caused by venous sinus stenoses and stent placement could be an appropriate treatment in patients who demonstrated a CVPG.


Author(s):  
Yazan Radaideh

Introduction : Although venous sinus stenting is an established treatment for medically refractory idiopathic intracranial hypertension, a subset of patients shows little or no improvement of symptoms after stenting. While this could be related to a number of factors, failure to sufficiently address the pressure gradient is one that can be recognized during the treatment procedure. We describe two patients who had a persistent venous pressure gradient after stent placement. Once identified, a second stent was placed with subsequent resolution of the pressure gradient. Methods : This retrospective chart review identified patients at a single institution who underwent venous sinus stenting and required immediate placement of a second venous sinus stent for a persistent pressure gradient. Results : Two patients with refractory idiopathic intracranial hypertension underwent cerebral angiography with venous manometry. In the first patient, unilateral venous sinus stenosis was present with a maximum pressure of 50 mmHg, which only decreased to 30 mmHg after placement of a right transverse‐sigmoid sinus stent. Subsequent manometry revealed a persistent gradient between the superior sagittal sinus and the right transverse sinus, which resolved after placement of a second stent in this location. In the second patient, bilateral stenosis was observed at the transverse‐sigmoid sinus junction; the maximum venous pressure was 40 mmHg, and a gradient of 30 mmHg was measured at the right transverse‐sigmoid junction, where a venous sinus stent was placed. Venous sinus pressure measurements performed immediately after the stent placement demonstrated a persistent pressure gradient of 20 mmHg in the contralateral transverse‐sigmoid sinus junction, which resolved after contralateral stent placement. Both patients showed sustained improvement in their symptoms at 1 year follow up. Conclusions : In some patients with idiopathic intracranial hypertension and venous sinus stenosis, a single stent may not sufficiently reduce the pressure gradient. A second stent may be required; however, this is only detectable with post‐stent pressure measurements. Performing manometry after stent placement should be routinely performed in order to detect persistent venous pressure gradient.


2012 ◽  
Vol 116 (3) ◽  
pp. 538-548 ◽  
Author(s):  
David A. Kumpe ◽  
Jeffrey L. Bennett ◽  
Joshua Seinfeld ◽  
Victoria S. Pelak ◽  
Ashish Chawla ◽  
...  

Object The use of unilateral dural sinus stent placement in patients with idiopathic intracranial hypertension (IIH) has been described by multiple investigators. To date there is a paucity of information on the angiographic and hemodynamic outcome of these procedures. The object of this study was to define the clinical, angiographic, and hemodynamic outcome of placement of unilateral dural sinus stents to treat intracranial venous hypertension in a subgroup of patients meeting the diagnostic criteria for IIH. Methods Eighteen consecutive patients with a clinical diagnosis of IIH were treated with unilateral stent placement in the transverse-sigmoid junction region. All patients had papilledema. All 12 female patients had headaches; 1 of 6 males had headaches previously that disappeared after weight loss. Seventeen patients had elevated opening pressures at lumbar puncture. Twelve patients had opening pressures of 33–55 cm H2O. All patients underwent diagnostic cerebral arteriography that showed venous outflow compromise by filling defects in the transverse-sigmoid junction region. All patients underwent intracranial selective venous pressure measurements across the filling defects. Follow-up arteriography was performed in 16 patients and follow-up venography/venous pressure measurements were performed in 15 patients. Results Initial pressure gradients across the filling defects ranged from 10.5 to 39 mm Hg. Nineteen stent procedures were performed in 18 patients. One patient underwent repeat stent placement for hemodynamic failure. Pressure gradients were reduced in every instance and ranged from 0 to 7 mm Hg after stenting. Fifteen of 16 patients in whom ophthalmological follow-up was performed experienced disappearance of papilledema. Follow-up arteriography in 16 patients at 5–99 months (mean 25.3 months, median 18.5 months) showed patency of all stents without in-stent restenosis. Two patients had filling defects immediately above the stent. Four other patients developed transverse sinus narrowing above the stent without filling defects. One of these patients underwent repeat stent placement because of hemodynamic deterioration. Two of the other 3 patients had hemodynamic deterioration with recurrent pressure gradients of 10.5 and 18 mm Hg. Conclusions All stents remained patent without restenosis. Stent placement is durable and successfully eliminates papilledema in appropriately selected patients. Continuing hemodynamic success in this series was 80%, and was 87% with repeat stent placement in 1 patient.


2018 ◽  
Vol 31 (5) ◽  
pp. 513-517 ◽  
Author(s):  
Jerry ME Koovor ◽  
Gloria V Lopez ◽  
Kalen Riley ◽  
Juan Tejada

Purpose Transverse sinus stenosis is commonly seen in patients with idiopathic intracranial hypertension. It is not clear whether it is the cause or the result of idiopathic intracranial hypertension. Stenting for idiopathic intracranial hypertension has been carried out in several prior series. Our goal was to evaluate the clinical and imaging follow-up results of patients with idiopathic intracranial hypertension that underwent stenting for this condition at our center. Materials and Methods We reviewed the clinical, venographic and follow-up imaging data in patients who underwent elective transverse sinus stenting during the period from 2011 to 2017. Results In total, 18 patients with idiopathic intracranial hypertension were identified. The mean lumbar cerebrospinal fluid opening pressure recorded was 408 mmH20. Overall, 16 patients met the inclusion criteria and underwent transverse sinus stenting. At venography, the mean pressure gradient across the dominant transverse sinus stenosis was 21 mmHg. The pressure gradient immediately after stenting in all of those measured was negligible. Following stenting, headaches improved in 10 of the 16 cases, with persistent headaches in four patients, one of which had persistent baseline migraines. All cases showed resolution of the papilledema on follow up. Follow-up imaging with computed tomography venography showed that the stents remained widely patent. The follow up in clinic was done for a mean period of 35.5 months. Follow up with computed tomography venography was done for a mean of 10.3 months. Conclusion Venous sinus stenting is a safe and effective procedure. It relieves papilledema in all cases and improves headaches in most cases.


2019 ◽  
Vol 130 (3) ◽  
pp. 999-1005 ◽  
Author(s):  
Cameron M. McDougall ◽  
Vin Shen Ban ◽  
Jeffrey Beecher ◽  
Lee Pride ◽  
Babu G. Welch

OBJECTIVEThe role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis.METHODSMEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.RESULTSFrom 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022).CONCLUSIONSThere appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.


2017 ◽  
Vol 127 (5) ◽  
pp. 1126-1133 ◽  
Author(s):  
Kenneth C. Liu ◽  
Robert M. Starke ◽  
Christopher R. Durst ◽  
Tony R. Wang ◽  
Dale Ding ◽  
...  

OBJECTIVEIdiopathic intracranial hypertension (IIH) may cause blindness due to elevated intracranial pressure (ICP). Venous sinus stenosis has been identified in select patients, leading to stenting as a potential treatment, but its effects on global ICP have not been completely defined. The purpose of this pilot study was to assess the effects of venous sinus stenting on ICP in a small group of patients with IIH.METHODSTen patients for whom medical therapy had failed were prospectively followed. Ophthalmological examinations were assessed, and patients with venous sinus stenosis on MR angiography proceeded to catheter angiography, venography with assessment of pressure gradient, and ICP monitoring. Patients with elevated ICP measurements and an elevated pressure gradient across the stenosis were treated with stent placement.RESULTSAll patients had elevated venous pressure (mean 39.5 ± 14.9 mm Hg), an elevated gradient across the venous sinus stenosis (30.0 ± 13.2 mm Hg), and elevated ICP (42.2 ± 15.9 mm Hg). Following stent placement, all patients had resolution of the stenosis and gradient (1 ± 1 mm Hg). The ICP values showed an immediate decrease (to a mean of 17.0 ± 8.3 mm Hg), and further decreased overnight (to a mean of 8 ± 4.2 mm Hg). All patients had subjective and objective improvement, and all but one improved during follow-up (median 23.4 months; range 15.7–31.6 months). Two patients developed stent-adjacent stenosis; retreatment abolished the stenosis and gradient in both cases. Patients presenting with papilledema had resolution on follow-up funduscopic imaging and optical coherence tomography (OCT) and improvement on visual field testing. Patients presenting with optic atrophy had optic nerve thinning on follow-up OCT, but improved visual fields.CONCLUSIONSFor selected patients with IIH and venous sinus stenosis with an elevated pressure gradient and elevated ICP, venous sinus stenting results in resolution of the venous pressure gradient, reduction in ICP, and functional, neurological, and ophthalmological improvement. As patients are at risk for stent-adjacent stenosis, further follow-up is necessary to determine long-term outcomes and gain an understanding of venous sinus stenosis as a primary or secondary pathological process behind elevated ICP.


2020 ◽  
Vol 132 (3) ◽  
pp. 749-754 ◽  
Author(s):  
Feng Yan ◽  
Gary Rajah ◽  
Yuchuan Ding ◽  
Yang Hua ◽  
Hongqi Zhang ◽  
...  

OBJECTIVESymptomatic intracranial hypertension can be caused by cerebral venous sinus stenosis (CVSS) and cerebral venous sinus thrombotic (CVST) stenosis, which is usually found in some patients with idiopathic intracranial hypertension (IIH). Recently, at the authors’ center, they utilized intravascular ultrasound (IVUS) as an adjunct to conventional venoplasty or stenting to facilitate diagnosis and accurate stent placement in CVSS.METHODSThe authors designed a retrospective review of their prospective database of patients who underwent IVUS-guided venous sinus stenting between April 2016 and February 2017. Clinical, radiological, and ophthalmological information was recorded and analyzed. IVUS was performed in 12 patients with IIH (9 with nonthrombotic CVSS, 3 with secondary stenosis combined with CVST) during venoplasty through venous access. The IVUS catheter was used from a proximal location to the site of stenosis. Post-stenting follow-up, including symptomatic improvement, stent patency, and adjacent-site stenosis, was assessed at 1 year.RESULTSThirteen stenotic cerebral sinuses in 12 patients were corrected using IVUS-guided stenting. No technical or neurological complications were encountered. The IVUS images were excellent for the diagnosis of the stenosis, and intraluminal thrombi were clearly visualized by using IVUS in 3 (25%) of the 12 patients. A giant arachnoid granulation was demonstrated in 1 (8.3%) of the 12 patients. Intravenous compartments or septations (2 of 12, 16.7%) and vessel wall thickening (6 of 12, 50%) were also noted. At 1-year follow-up, 10 of 12 patients were clinically symptom-free in our series.CONCLUSIONSIVUS is a promising tool with the potential to improve the diagnostic accuracy in IIH, aiding in identification of the types of intracranial venous stenosis, assisting in stent selection, and guiding stent placement. Further study of the utility of IVUS in venous stenting and venous stenosis pathology is warranted.


2020 ◽  
pp. neurintsurg-2020-016170
Author(s):  
Anthony Larson ◽  
Lorenzo Rinaldo ◽  
John J Chen ◽  
Jeremy Cutsforth-Gregory ◽  
Amy R Theiler ◽  
...  

BackgroundVenous sinus stenting is an effective treatment for papilledema associated with idiopathic intracranial hypertension (IIH). It is unclear whether unilateral transverse-sigmoid sinus (TSS) stenting adequately decompresses the contralateral TSS system in cases of bilateral transverse sinus stenosis. The objective of this study was to compare changes in bilateral TSS pressure gradients following unilateral TSS stenting in a series of patients with IIH.MethodsConsecutive patients from a single institution who underwent venous sinus stenting for IIH with measurement of bilateral pressure gradients before and after stenting for IIH were enrolled. Pressure gradients in both TSS pre- and post-stenting were measured during the procedure. The TSS with the highest gradient was stented. Changes in TSS pressure gradients following stent placement were calculated for both TSS. Mean changes in pressure gradients of ipsilateral and contralateral TSS were calculated.ResultsSixteen patients with IIH who underwent TSS stenting were included. All were female. Mean age was 36.4 years. The right-sided TSS was the stented side in 12 (75.0%) patients. The mean pre-stent pressure gradient of the ipsilateral TSS was 19.3 mmHg (SD=10.8), which was reduced to a mean of 3.8 mmHg (3.4) following stent placement (P =<0.0001). On the contralateral (non-stented) side, the mean pre-stent gradient of 15.1 mmHg (7.5) was reduced to a mean of 7.8 mmHg (6.6) following stenting (P=0.006).ConclusionsThe use of a single stent provides some venous decompression of the contralateral non-stented stenosis in most cases of IIH treated with endovascular therapy.


2021 ◽  
Vol 11 (3) ◽  
pp. 382
Author(s):  
Dinesh Ramanathan ◽  
Zachary D. Travis ◽  
Emmanuel Omosor ◽  
Taylor Wilson ◽  
Nikhil Sahasrabudhe ◽  
...  

We describe a case of severe headaches, double vision, and progressive vision loss secondary to a ruptured intracranial cyst (IAC) in a 31-year-old woman with no relevant past medical history. The case is peculiar because drainage of the subdural hygroma led to a minimal improvement in vision with persistent elevated intracranial pressure (ICP). Further exploration revealed transverse sinus stenosis necessitating stenting. Evaluation post-stenting showed marked reduction of ICP and improvement in symptoms. This report underscores the importance of comprehensive work-up and suspicion of multiple underlying etiologies that may be crucial to complete resolution of presenting symptoms in some cases. We provide an overview of the clinical indications and evidence for venous sinus stenting in treating idiopathic intracranial hypertension (IIH).


2017 ◽  
Vol 10 (4) ◽  
pp. 391-395 ◽  
Author(s):  
Daniel Raper ◽  
Thomas J Buell ◽  
Dale Ding ◽  
Ching-Jen Chen ◽  
Robert M Starke ◽  
...  

ObjectiveVenous sinus stenting (VSS) is a safe and effective treatment for idiopathic intracranial hypertension (IIH) with angiographic venous sinus stenosis. However, predictors of stent-adjacent stenosis (SAS) remain poorly defined.MethodsWe performed a retrospective review of 47 patients with IIH and intracranial venous stenosis who underwent VSS with pre- and post-stent venography. Patient characteristics, treatments and outcomes were reviewed. Changes in pressure gradient after VSS were classified according to pattern of gradient resolution into types I–III.ResultsType I gradient resolution, in which mean venous pressure (MVP) in the transverse sinus (TS) decreases towards MVP in the sigmoid sinus (SS), occurred in 18 patients (38.3%). Type II gradient resolution pattern, in which SS MVP increases towards that in the TS, occurred in 7patients (14.9%). Type III pattern, in which MVP equilibrates to a middle value, occurred in 22patients (46.8%). SAS occurred in 0%, 28.6%, and 22.7% of patients in types I, II and III, respectively. Compared with patients with type I gradient resolution, SAS was more common in those with type II (p=0.0181) and type III (p=0.0306) patterns.ConclusionsThe pattern of change in the trans-stenosis venous pressure gradient may be predictive of SAS and is a useful tool for classifying the response of the venous obstruction to stenting. A type I pattern appears to represent the ideal response to VSS. Some patients with type II and III changes, particularly if they have other predictors of recurrent stenosis, may benefit from longer initial stent constructs.


Sign in / Sign up

Export Citation Format

Share Document