Nuclear medicine imaging in oral diseases: A review

2021 ◽  
Vol 7 (3) ◽  
pp. 99-102
Author(s):  
Kajol M Talreja

Nuclear medicine is the discipline of medicine that deals with the use of radionuclides in research, diagnosis, and treatment. It works on molecular & functional level and uses radiopharmaceuticals in its procedure helping in detection of lesions before morphologic change is evident. Radiopharmaceuticals also known as Radionuclides/ Radioisotopes are unstable atoms of a chemical element, actively emit radiation. These emitted radiations are absorbed by photomultiplier tube and reconstructed by a computer system followed by display of an image. The rationale of writing this article is to understand about Nuclear Medicine and its applications in oral diseases.

2001 ◽  
Vol 40 (03) ◽  
pp. 59-70 ◽  
Author(s):  
W. Becker ◽  
J. Meiler

SummaryFever of unknown origin (FUO) in immunocompetent and non neutropenic patients is defined as recurrent fever of 38,3° C or greater, lasting 2-3 weeks or longer, and undiagnosed after 1 week of appropriate evaluation. The underlying diseases of FUO are numerous and infection accounts for only 20-40% of them. The majority of FUO-patients have autoimmunity and collagen vascular disease and neoplasm, which are responsible for about 50-60% of all cases. In this respect FOU in its classical definition is clearly separated from postoperative and neutropenic fever where inflammation and infection are more common. Although methods that use in-vitro or in-vivo labeled white blood cells (WBCs) have a high diagnostic accuracy in the detection and exclusion of granulocytic pathology, they are only of limited value in FUO-patients in establishing the final diagnosis due to the low prevalence of purulent processes in this collective. WBCs are more suited in evaluation of the focus in occult sepsis. Ga-67 citrate is the only commercially available gamma emitter which images acute, chronic, granulomatous and autoimmune inflammation and also various malignant diseases. Therefore Ga-67 citrate is currently considered to be the tracer of choice in the diagnostic work-up of FUO. The number of Ga-67-scans contributing to the final diagnosis was found to be higher outside Germany than it has been reported for labeled WBCs. F-l 8-2’-deoxy-2-fluoro-D-glucose (FDG) has been used extensively for tumor imaging with PET. Inflammatory processes accumulate the tracer by similar mechanisms. First results of FDG imaging demonstrated, that FDG may be superior to other nuclear medicine imaging modalities which may be explained by the preferable tracer kinetics of the small F-l 8-FDG molecule and by a better spatial resolution of coincidence imaging in comparison to a conventional gamma camera.


2021 ◽  
Vol 11 (14) ◽  
pp. 6460
Author(s):  
Fabio Di Martino ◽  
Patrizio Barca ◽  
Eleonora Bortoli ◽  
Alessia Giuliano ◽  
Duccio Volterrani

Quantitative analyses in nuclear medicine are increasingly used, both for diagnostic and therapeutic purposes. The Partial Volume Effect (PVE) is the most important factor of loss of quantification in Nuclear Medicine, especially for evaluation in Region of Interest (ROI) smaller than the Full Width at Half Maximum (FWHM) of the PSF. The aim of this work is to present a new approach for the correction of PVE, using a post-reconstruction process starting from a mathematical expression, which only requires the knowledge of the FWHM of the final PSF of the imaging system used. After the presentation of the theoretical derivation, the experimental evaluation of this method is performed using a PET/CT hybrid system and acquiring the IEC NEMA phantom with six spherical “hot” ROIs (with diameters of 10, 13, 17, 22, 28, and 37 mm) and a homogeneous “colder” background. In order to evaluate the recovery of quantitative data, the effect of statistical noise (different acquisition times), tomographic reconstruction algorithm with and without time-of-flight (TOF) and different signal-to-background activity concentration ratio (3:1 and 10:1) was studied. The application of the corrective method allows recovering the loss of quantification due to PVE for all sizes of spheres acquired, with a final accuracy less than 17%, for lesion dimensions larger than two FWHM and for acquisition times equal to or greater than two minutes.


2010 ◽  
Vol 41 (1) ◽  
pp. 1080 ◽  
Author(s):  
Peter S. Friedman ◽  
Robert Ball ◽  
J. Wehrley Chapman ◽  
Daniel S. Levin ◽  
Curtis Weaverdyck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document