scholarly journals Plants as pharmaceutical excipients in oral sustained drug delivery systems: A review

2021 ◽  
Vol 9 (3) ◽  
pp. 26-38
Author(s):  
T O Uwah ◽  
E I Akpabio ◽  
Daniel Effiong
Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 187 ◽  
Author(s):  
Alessandra Adrover ◽  
Patrizia Paolicelli ◽  
Stefania Petralito ◽  
Laura Di Muzio ◽  
Jordan Trilli ◽  
...  

In this study, gellan gum (GG), a natural polysaccharide, was used to fabricate spherical porous beads suitable as sustained drug delivery systems for oral administration. GG was cross-linked with calcium ions to prepare polymeric beads. Rheological studies and preliminary experiments of beads preparation allowed to identify the GG and the CaCl2 concentrations suitable for obtaining stable and spherical particles. GG beads were formed, through ionotropic gelation technique, with and without the presence of the synthetic clay laponite. The resultant beads were analyzed for dimensions (before and after freeze-drying), morphological aspects and ability to swell in different media miming biological fluids, namely SGF (Simulated Gastric Fluid, HCl 0.1 M) and SIF (Simulated Intestinal Fluid, phosphate buffer, 0.044 M, pH 7.4). The swelling degree was lower in SGF than in SIF and further reduced in the presence of laponite. The GG and GG-layered silicate composite beads were loaded with two model drugs having different molecular weight, namely theophylline and cyanocobalamin (vitamin B12) and subjected to in-vitro release studies in SGF and SIF. The presence of laponite in the bead formulation increased the drug entrapment efficiency and slowed-down the release kinetics of both drugs in the gastric environment. A moving-boundary swelling model with “diffuse” glassy-rubbery interface was proposed in order to describe the swelling behavior of porous freeze-dried beads. Consistently with the swelling model adopted, two moving-boundary drug release models were developed to interpret release data from highly porous beads of different drugs: drug molecules, e.g., theophylline, that exhibit a typical Fickian behavior of release curves and drugs, such as vitamin B12, whose release curves are affected by the physical/chemical interaction of the drug with the polymer/clay complex. Theoretical results support the experimental observations, thus confirming that laponite may be an effective additive for fabricating sustained drug delivery systems.


Author(s):  
Gaganjot Kaur ◽  
Jasleen Grewal ◽  
Kiran Jyoti ◽  
Upendra K. Jain ◽  
Ramesh Chandra ◽  
...  

2014 ◽  
Vol 183 ◽  
pp. 154-166 ◽  
Author(s):  
Nowsheen Goonoo ◽  
Archana Bhaw-Luximon ◽  
Reetesh Ujoodha ◽  
Anil Jhugroo ◽  
Gary K. Hulse ◽  
...  

2002 ◽  
Vol 335 (2-3) ◽  
pp. 89-93 ◽  
Author(s):  
Isabella Orienti ◽  
R. Treré ◽  
B. Luppi ◽  
F. Bigucci ◽  
T. Cerchiara ◽  
...  

2016 ◽  
Vol 244 ◽  
pp. 74-82 ◽  
Author(s):  
Anna J. Svagan ◽  
Jan-Willem Benjamins ◽  
Zeinab Al-Ansari ◽  
Daniel Bar Shalom ◽  
Anette Müllertz ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 87 ◽  
Author(s):  
Giulia Auriemma ◽  
Andrea Cerciello ◽  
Rita P. Aquino ◽  
Pasquale Del Gaudio ◽  
Bruno M. Fusco ◽  
...  

Core-shell beads loaded with betamethasone were developed using co-axial prilling as production technique and pectin plus alginate as polymeric carriers. During this study, many operative conditions were intensively investigated to find the best ones necessary to produce uniform core-shell particle systems in a reproducible way. Particularly, feed solutions’ composition, polymers mass ratios and the effect of the main process parameters on particles production, micromeritics, inner structure, drug loading and drug-release/swelling profiles in simulated biological fluids were studied. The optimized core-shell formulation F5 produced with a pectin core concentration of 4.0% w/v and an alginate shell concentration of 2.0% w/v (2:1 core:shell ratio) acted as a sustained drug delivery system. It was able to reduce the early release of the drug in the upper part of the gastro-intestinal tract for the presence of the zinc-alginate gastro-resistant outer layer and to specifically deliver it in the colon, thanks to the selectivity of amidated low methoxy pectin core for this district. Therefore, these particles may be proposed as colon targeted drug delivery systems useful for inflammatory bowel disease (IBD) therapy.


Sign in / Sign up

Export Citation Format

Share Document