scholarly journals On the Efficient Representation of an Unbounded Resource with the Aid of One-Counter Circuits

2015 ◽  
Vol 20 (2) ◽  
pp. 139-156
Author(s):  
V. A. Bashkin

A class of infinite-state automata with a simple periodic behaviour and a convenient graphical representation is studied. A positive one-counter circuit is defined as a strongly connected one-counter net (one-counter nondeterministic finite automata without zero-testing) with at least one positive cycle. It is shown that in a positive circuit an infinite part of a reachability set is an arithmetic progression; numerical properties of this progression are estimated. A specific graphical representation of circuits is presented. General one-counter nets are equivalent to Petri Nets with at most one unbounded place and to pushdown automata with a single-symbol stack alphabet. It is shown that an arbitrary one-counter net can be represented by a finite tree of circuits. A one-counter net is called sound, if a counter is used only for “infinite-state” (periodic) behaviour. It is shown that for an arbitrary one-counter net an equivalent sound net can be effectively constructed from the corresponding tree of circuits.

2010 ◽  
Vol 7 (2) ◽  
pp. 331-357 ◽  
Author(s):  
Tomás Flouri ◽  
Jan Janousek ◽  
Bořivoj Melichar

Subtree matching is an important problem in Computer Science on which a number of tasks, such as mechanical theorem proving, term-rewriting, symbolic computation and nonprocedural programming languages are based on. A systematic approach to the construction of subtree pattern matchers by deterministic pushdown automata, which read subject trees in prefix and postfix notation, is presented. The method is analogous to the construction of string pattern matchers: for a given pattern, a nondeterministic pushdown automaton is created and is then determinised. In addition, it is shown that the size of the resulting deterministic pushdown automata directly corresponds to the size of the existing string pattern matchers based on finite automata.


2019 ◽  
Vol 15 (02) ◽  
pp. 283-305 ◽  
Author(s):  
J. Kavikumar ◽  
S. P. Tiwari ◽  
Nur Ain Ebas ◽  
A. H. Nor Shamsidah

The constructions of finite switchboard state automata are known to be an extension of finite automata in the view of commutative and switching state machines. This research incorporated an idea of a switchboard in the general fuzzy automata to introduce general fuzzy finite switchboard automata. The attained output reveals that a strongly connected general fuzzy finite switchboard automaton is equivalent to the retrievable general fuzzy automata. Further, the notion of the switchboard subsystem and strong switchboard subsystem of general fuzzy finite switchboard automata are examined. Finally, the concept of fuzzy topology on general fuzzy finite switchboard automata in terms of these characterisations is formulated.


2003 ◽  
Vol 14 (04) ◽  
pp. 605-624 ◽  
Author(s):  
Constantinos Bartzis ◽  
Tevfik Bultan

In this paper we discuss efficient symbolic representations for infinite-state systems specified using linear arithmetic constraints. We give algorithms for constructing finite automata which represent integer sets that satisfy linear constraints. These automata can represent either signed or unsigned integers and have a lower number of states compared to other similar approaches. We present efficient storage techniques for the transition function of the automata and extend the construction algorithms to formulas on both boolean and integer variables. We also derive conditions which guarantee that the pre-condition computations used in symbolic verification algorithms do not cause an exponential increase in the automata size. We experimentally compare different symbolic representations by using them to verify non-trivial concurrent systems. Experimental results show that the symbolic representations based on our construction algorithms outperform the polyhedral representation used in Omega Library, and the automata representation used in LASH.


1991 ◽  
Vol 02 (03) ◽  
pp. 183-205 ◽  
Author(s):  
Dung T. Huynh

In this paper, we investigate the complexity of computing the detector, constructor and lexicographic constructor functions for a given language. The following classes of languages will be considered: (1) context-free languages, (2) regular sets, (3) languages accepted by one-way nondeterministic auxiliary pushdown automata, (4) languages accepted by one-way nondeterministic logspace-bounded Turing machines, (5) two-way deterministic pushdown automaton languages, (6) languages accepted by uniform families of constant-depth polynomial-size Boolean circuits, and (7) languages accepted by multihead finite automata. We show that for the classes (1)–(4), efficient detectors, constructors and lexicographic constructors exist, whereas for (5)– (7) polynomial-time computable detectors, constructors and lexicographic constructors exist iff there are no sparse sets in NP−P (or equivalently, E=NE). Our results provide sharp boundaries between classes of languages which have efficient detectors, constructors and classes of languages for which efficient detectors and constructors do not appear to exist.


2009 ◽  
Vol 20 (04) ◽  
pp. 629-645 ◽  
Author(s):  
GIOVANNI PIGHIZZINI

The simulation of deterministic pushdown automata defined over a one-letter alphabet by finite state automata is investigated from a descriptional complexity point of view. We show that each unary deterministic pushdown automaton of size s can be simulated by a deterministic finite automaton with a number of states that is exponential in s. We prove that this simulation is tight. Furthermore, its cost cannot be reduced even if it is performed by a two-way nondeterministic automaton. We also prove that there are unary languages for which deterministic pushdown automata cannot be exponentially more succinct than finite automata. In order to state this result, we investigate the conversion of deterministic pushdown automata into context-free grammars. We prove that in the unary case the number of variables in the resulting grammar is strictly smaller than the number of variables needed in the case of nonunary alphabets.


Author(s):  
Holger Bock Axelsen ◽  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

It is well known that reversible finite automata do not accept all regular languages, that reversible pushdown automata do not accept all deterministic context-free languages, and that reversible queue automata are less powerful than deterministic real-time queue automata. It is of significant interest from both a practical and theoretical point of view to close these gaps. We here extend these reversible models by a preprocessing unit which is basically a reversible injective and length-preserving finite state transducer. It turns out that preprocessing the input using such weak devices increases the computational power of reversible deterministic finite automata to the acceptance of all regular languages, whereas for reversible pushdown automata the accepted family of languages lies strictly in between the reversible deterministic context-free languages and the real-time deterministic context-free languages. For reversible queue automata the preprocessing of the input leads to machines that are stronger than real-time reversible queue automata, but less powerful than real-time deterministic (irreversible) queue automata. Moreover, it is shown that the computational power of all three types of machines is not changed by allowing the preprocessing finite state transducer to work irreversibly. Finally, we examine the closure properties of the family of languages accepted by such machines.


2019 ◽  
Vol 29 (6) ◽  
pp. 351-356
Author(s):  
Ilya E. Ivanov

Abstract Finite automata transform periodic sequences into periodic ones. The period of the output sequence is bounded from above by a linear function of input period. It is known that pushdown automata also preserve the set of periodic sequences. We prove that the output period for one-counter pushdown automata is bounded from above by a quadratic function of input period. We also give an example of an automaton with a quadratic lower bound on output period.


2016 ◽  
Vol 27 (05) ◽  
pp. 557-577 ◽  
Author(s):  
Vojtěch Vorel

We present a strongly exponential lower bound that applies both to the subset synchronization threshold for binary deterministic automata and to the careful synchronization threshold for binary partial automata. In the later form, the result finishes the research initiated by Martyugin (2013). Moreover, we show that both the thresholds remain strongly exponential even if restricted to strongly connected binary automata. In addition, we apply our methods to computational complexity. Existence of a subset reset word is known to be PSPACE-complete; we show that this holds even under the restriction to strongly connected binary automata. The results apply also to the corresponding thresholds in two more general settings: D1- and D3-directable nondeterministic automata and composition sequences over finite domains.


Author(s):  
Bruno Guillon ◽  
Giovanni Pighizzini ◽  
Luca Prigioniero

Non-self-embedding grammars are a restriction of context-free grammars which does not allow to describe recursive structures and, hence, which characterizes only the class of regular languages. A double exponential gap in size from non-self-embedding grammars to deterministic finite automata is known. The same size gap is also known from constant-height pushdown automata and [Formula: see text]-limited automata to deterministic finite automata. Constant-height pushdown automata and [Formula: see text]-limited automata are compared with non-self-embedding grammars. It is proved that non-self-embedding grammars and constant-height pushdown automata are polynomially related in size. Furthermore, a polynomial size simulation by [Formula: see text]-limited automata is presented. However, the converse transformation is proved to cost exponential. Finally, a different simulation shows that also the conversion of deterministic constant-height pushdown automata into deterministic [Formula: see text]-limited automata costs polynomial.


Sign in / Sign up

Export Citation Format

Share Document